

Report dei dati anno 2009

Reti di monitoraggio della qualità delle acque superficiali della provincia di Piacenza

Servizio Sistemi Ambientali - Sezione Provinciale ARPA PIACENZA

A cura di:

Elisabetta Russo

Emanuela Peroncini, Marcello De Crema

Area Monitoraggio e Valutazione Corpi Idrici

Giuseppe Gallinari, Laura Contardi, Bruno Bardetti

Area S.O. Monitoraggio e Valutazione Ecosistemi Naturali e Biodiversità

SERVIZIO SISTEMI AMBIENTALI

Sezione Provinciale ARPA Piacenza

http://www.arpa.emr.it/Piacenza/

Indice

PREMESSA	pag. 4
Le Reti di Monitoraggio • Qualità Ambientale • Vita Pesci • Potabilizzazione	pag. 7
IL METODO DI CLASSIFICAZIONE DEI CORPI IDRICI SUPERFICIALI	pag. 11
La Qualità Ambientale	pag. 18

PREMESSA

Il 2009 è stato un anno particolarmente significativo per le attività di monitoraggio della qualità ambientale delle acque, in quanto rappresenta l'anno di passaggio tra il monitoraggio gestito ai sensi del D.Lgs. 152/99 e quello gestito in applicazione della Dir. 2000/60/CE e relativo decreto di recepimento nazionale-D.Lgs. 152/06.

L'Italia ha subito procedura di infrazione da parte della CE per il ritardo nel recepimento della Direttiva 2000/60; di conseguenza gli anni 2008 e 2009 hanno visto un'accelerazione nelle procedure di adeguamento, che peraltro non sono ancora concluse (ad oggi-settembre 2010): manca infatti ancora il decreto applicativo sulla *classificazione*, fondamentale per poter utilizzare i risultati del nuovo monitoraggio (D. M. 56/2009) e poterli valutare in coerenza con la direttiva e i suoi obiettivi.

Molto è stato fatto relativamente alla messa a punto dei metodo biologici di indagine (macrobenthos multihabitat proporzionale, macrofite acquatiche, diatomee, fitoplancton), ma le attività sono state condotte per tutto il 2009 e sono tuttora (nel 2010) a livello sperimentale, data la grande complessità del nuovo monitoraggio e la mancanza di riferimenti scientifici a livello nazionale e internazionale a cui le ARPA possano rivolgersi; infatti gli enti di ricerca stanno sperimentando insieme alle Agenzie Ambientali l'applicazione degli indici più idonei a rappresentare la qualità ambientale delle acque secondo i criteri della direttiva-quadro. Il cambiamento non riveste tuttavia solo il biomonitoraggio, ma anche le analisi chimico-fisiche dette di supporto alla interpretazione dei dati biologici, con particolare riferimento alla Sostanze Prioritarie (P) e Prioritarie Pericolose (PP).

In questa situazione di profondo cambiamento, per l'anno 2009 la gestione delle reti di monitoraggio ha dovuto garantire il presidio dei controlli e contemporaneamente sviluppare la sperimentazione e la ricerca, naturalmente a parità di risorse umane e finanziarie. Per far fronte a queste esigenze è stata concordata con la Regione ER e le Province una revisione delle stazioni da controllare per diminuirne il numero complessivo, in modo da ricavare le risorse necessarie per condurre la sperimentazione sui nuovi metodi.

Il criterio seguito per la razionalizzazione della Rete è stato quello di sospendere (totalmente o parzialmente) il monitoraggio nelle stazioni dove 1) lo stato ecologico (SECA) è risultato costante nelle classi peggiori (C4, C5) negli ultimi 3 anni precedenti (2006-2007-2008), 2) dove il numero di campionamenti è risultato fortemente insufficiente per ragioni idrologiche (secca) e 3) in alcune stazioni di chiusura di sottobacino, che non aggiungono informazioni utili alla valutazione complessiva del bacino.

Sulla rete cosiddetta *TRANSITORIA*, riportata nella tabella seguente, ARPA ha condotto nel corso del 2009 il monitoraggio tradizionale; su 23 stazioni complessive presenti nel territorio provinciale (esclusi i 2 invasi artificiali del Molato e di Mignano), 7 stazioni sono state sospese completamente e 3 parzialmente (solo pesticidi e parametri di base), mentre nelle restanti 13 il monitoraggio è stato effettuato ai sensi della DGR 1420/2002.

E' da sottolineare che fino al 30 maggio 2009, giorno di pubblicazione sulla GU del D. M. 56 del 14 aprile 2009-decreto sul monitoraggio, mancava completamente normativa di riferimento, essendo già decaduto il D.L.gs 152/99, a cui è sempre stato ispirato metodologicamente il monitoraggio; fin da gennaio 2009 tuttavia si è data continuità all'attività di monitoraggio ai sensi del D.Lgs 152/99 per valutare le tendenze evolutive in atto attraverso risultati confrontabili con le serie storiche pregresse (monitoraggio chimico e/o biologico), specialmente in assenza di nuovi strumenti di valutazione dello stato di qualità.

A fronte di un vuoto normativo, che fra l'altro non obbligava più a verificare il raggiungimento degli obiettivi intermedi sulle stazioni di tipo AS e AI, anzi addirittura non distingueva più fra stazioni di tipo A e stazioni di tipo B, alcune stazioni in chiusura di bacini significativi o di interesse sono state sospese, come Pontetidone sul T. Tidone, Foce in Po sul F. Trebbia e Ponte Bagarotto sul T. Nure, mantenendo su queste il solo controllo dei pesticidi e dei parametri di base. Ciò comporta che queste stazioni possono essere classificate per il 2009 con un indice SACA, costruito senza IBE e solo su dati parziali.

E' stata tuttavia mantenuta l'analisi degli isotopi dell'ossigeno e dell'idrogeno sulle 4 stazioni in cui si determinano dal 2005: Po a CSG, Trebbia a Pieve Dugliara, Nure a Biana e a Ponte Bagarotto.

E' stato mantenuto immodificato anche il monitoraggio nella Rete Vita-Pesci (5 stazioni), nella Rete degli Invasi (Diga del Molato, Diga di Mignano), nella Rete della Potabilizzazione sul Bacino dell'Arda (Case Bonini, Diga di Mignano).

Per la struttura di dettaglio delle Reti di Monitoraggio, si veda pag. 7 e seguenti.

Rete TRANSITORIA 2009.

BACINO	CORPO IDRICO	STAZIONE	COD. REG	TIPO	TIPO CORPO IDRICO	REVISIONE 2009	PARAMETRI	IBE	Note
РО	F. PO	C.S. Giovanni S.P. ex S.S.412	01000100	AS	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
РО	F. PO	S.S. 9 Piacenza – Lodi	01000200	AS	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
BARDONEZZA	R. BARDONEZZA	S.P. ex S.S. 10 p.te C.S. Giovanni- Bosnasco	01010100	В	Corpi idrici naturali	Sospesa	Nessuno		sospensione per qualità in classe C4-C5
CARONA- BORIACCO	T. BORIACCO	A valle di Castel San Giovanni	01030100	В	Corpi idrici naturali	Sospesa	Nessuno		sospensione per qualità in classe C4-C5
TIDONE	T. TIDONE	A monte Diga del Molato	01050100	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
TIDONE	T. LURETTA	Strada per Mottaziana	01050300	В	Corpi idrici naturali	Sospesa	Nessuno		sospensione per problemi idrologici
TIDONE	T. TIDONE	Pontetidone	01050400	Al	Corpi idrici naturali	Parzialmente Sospesa	Solo pesticidi e par. base		sospensione per problemi idrologici
TREBBIA	F. TREBBIA	Ponte Valsigiara	01090100	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
TREBBIA	T. AVETO	Ruffinati	01090200	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
TREBBIA	F. TREBBIA	S.S. 45 bivio Piancasale a valle Bobbio	01090400	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
TREBBIA	F. TREBBIA	Pieve Dugliara	01090600	AS	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
TREBBIA	F. TREBBIA	Foce in Po	01090700	AS	Corpi idrici naturali	Parzialmente Sospesa	Solo pesticidi e par. base		sospensione per problemi idrologici
NURE	T. NURE	Ponte presso Biana per Spettine	01110200	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
NURE	T. NURE	ponte Bagarotto	01110300	AS	Corpi idrici naturali	Parzialmente Sospesa	Solo pesticidi e par. base		sospensione per problemi idrologici
CHIAVENNA	T. CHERO	Ponte strada da Chero a Roveleto	01120100	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
CHIAVENNA	T. CHIAVENNA	ponte strada Caorso - Chiavenna Landi	01120200	Al	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
CHIAVENNA	T. VEZZENO	Ponte di Sariano	01120300	В	Corpi idrici naturali	Sospesa	Nessuno		stazione sottobacino
CHIAVENNA	T. RIGLIO	Ponte strada Chiavenna Landi Caorso	01120400	В	Corpi idrici naturali	Sospesa	Nessuno		stazione sottobacino
CAVO FONTANA	CAVO FONTANA	Apostolica di Soarza	01130100	В	Corpi idrici artificiali	Sospesa	Nessuno		sospensione per qualità in classe C4-C5
ARDA	T. ARDA	Case Bonini	01140200	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
ARDA	T. ARDA	A Villanova	01140400	Al	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	
ARDA	T. ONGINA	Ponte S.P.n.56 di Borla per Vigoleno	01140500	В	Corpi idrici naturali	Sospesa	Nessuno		stazione sottobacino
ARDA	T. ONGINA	S.P. ex S.S. 588 loc. Vidalenzo	01140600	В	Corpi idrici naturali	Confermata	Monitoraggio DGR 1420/02	si	

LE RETI DI MONITORAGGIO

Corpi idrici superficiali

Nel territorio della provincia di Piacenza sono presenti 95 corsi d'acqua naturali con bacino idrografico superiore a 10 km², di cui 14, riportati in tabella, sono bacini idrografici principali, cioè affluenti direttamente in Po.

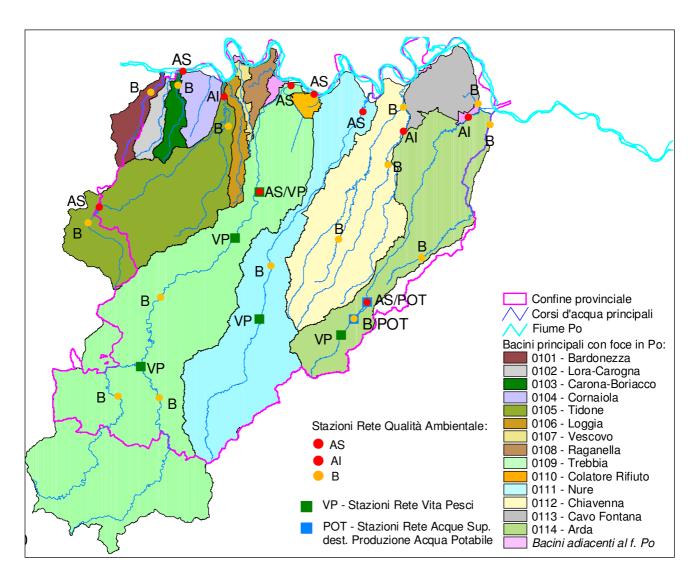
Bacini principali direttamente affluenti in Po.

Autorità di Bacino	Cod. AdB	Codice	Asta idrografica	Superficie ricadente nel territorio provinciale (Km²)	Quota media (m s.l.m.)	Area totale (Km²)
del Fiume Po	N008	0101	R. BARDONEZZA	10,60	189	
del Fiume Po	N008	0102	R. LORA - CAROGNA	32,71	164	
del Fiume Po	N008	0103	R. CARONA - BORIACCO	34,35	127	
del Fiume Po	N008	0104	R. CORNAIOLA	50,60	78	
del Fiume Po	N008	0105	T. TIDONE	271,01	434	350,33
del Fiume Po	N008	0106	T. LOGGIA	38,39	128	
del Fiume Po	N008	0107	R. DEL VESCOVO	13,63	64	
del Fiume Po	N008	0108	R. RAGANELLA	27,99	59	
del Fiume Po	N008	0109	F. TREBBIA	720,14	730	1083,03
del Fiume Po	N008	0110	COLATORE RIFIUTO*	16,79	57	
del Fiume Po	N008	0111	T. NURE	457,99	618	457,99
del Fiume Po	N008	0112	T. CHIAVENNA	360,07	243	362,94
del Fiume Po	N008	0113	CAVO FONTANA*	157,04	39	
del Fiume Po	N008	0114	T. ARDA	300,60	265	364,11

^{*} Il Cavo Fontana e il Colatore Rifiuto sono corpi idrici artificiali; il Cavo Fontana è caratterizzato da una portata di esercizio superiore a 3 m³/s.

Laghi/invasi

Bacino	Corpo idrico	Codice	Serbatoi artificiali	Superficie max invaso km²	Prof. max invaso m	Quota max invaso m s.l.m.	Volume max invaso Mm3
Tidone	T. Tidone	01050200	DIGA DEL MOLATO	0,68	37,4	354,4	8,4
Arda	T. Arda	01140300	DIGA DI MIGNANO	0,81	45,3	337,8	12,3


Il monitoraggio secondo i criteri del D.Lgs. n.152/99 si applica normalmente solo ai corpi idrici appartenenti ai bacini del *Bardonezza, Boriacco, Tidone, Trebbia, Nure, Chiavenna, Cavo Fontana, Arda*; fra questi, i corsi d'acqua naturali **significativi** (con bacino imbrifero pari ad almeno 400 km² di superficie) sono il Fiume **Trebbia** ed il Torrente **Nure,** mentre i serbatoi artificiali **significativi** (con superficie di 1 km² o volume d'invaso pari ad almeno 5 Mm³) sono la Diga del **Molato** e la Diga di **Mignano**. Alcuni corpi idrici, pur non rientrando nei criteri di inclusione dei corpi idrici significativi, sono ritenuti strategici in ambito provinciale e definiti come corpi idrici di interesse: il Torrente **Tidone**, il Torrente **Chiavenna** e il Torrente **Arda**.

Lo stato qualitativo delle acque superficiali

La classificazione dello stato delle acque superficiali viene effettuata sulle stazioni delle reti regionali di monitoraggio, rappresentate come punti di prelievo della:

- Rete Regionale della Qualità Ambientale;
- Reti Regionali a destinazione funzionale:
 - Acque destinate alla produzione di acqua potabile
 - Acque dolci idonee alla vita dei pesci

Mappa delle reti di monitoraggio delle acque superficiali

La **Rete regionale della Qualità Ambientale** consiste in **23** stazioni sui corsi d'acqua (acque correnti) e **2** sugli invasi, di queste 10 sono di tipo A, di rilevanza nazionale, e 15 stazioni sono di tipo B, utili cioè alla conoscenza della qualità ambientale lungo tutta l'asta fluviale. Le stazioni AS sono situate su corpi idrici significativi ai sensi del D.Lgs. 152/99, e quelle AI sui corpi idrici di interesse per il territorio o per il loro impatto sul Po. Le 25 stazioni sono distribuite nei bacini del: Fiume Po-2, Bardonezza-1, Boriacco-1, Tidone-4, compreso invaso artificiale del Molato e T. Luretta, Trebbia-5, compreso T. Aveto, Nure-2, Chiavenna-4, Arda-5, compreso invaso artificiale di Mignano, e Cavo Fontana-1.

In ciascuna delle 13 stazioni confermate nella Rete *Transitoria* del 2009 sono stati determinati, con freguenza mensile, i parametri di base riportati nella tabella seguente:

Parametri di base analizzati sui campioni della Rete QA

PARAMETRI D	PARAMETRI DI BASE-compresi 7 MACRODESCRITTORI*							
PARAMETRO	U.D.M.	PARAMETRO	U.D.M.					
Portata	m3/sec	Fosforo totale*	mg/l P					
Temperatura aria	∞	Ortofosfato	mg/l P					
Temperatura acqua	∞	Azoto	mg/l N-NH4					
pH (a 20 °C)	unità pH	Azoto nitroso	mg/l N-NO2					
Durezza	mg/l CaCO3	Azoto nitrico*	mg/l N-NO3					
Conducibilità a 20 ℃	μS/cm	Azoto totale	mg/l N					
Solidi sospesi	mg/l	Solfati	mg/I SO4					
Ossigeno disciolto	mg/l O2	Cloruri	mg/l Cl					
Ossigeno disciolto*	% saturazione	Escherichia coli*	UFC/100 ml					
BOD5*	mg/l O2	Enterocchi	UFC/100 ml					
COD*	mg/l O2	Salmonelle/Grupp	/ 1000 ml					

e sulle 5 stazioni di tipo A confermate nella Rete *Transitoria* 2009 sono stati determinati anche i parametri addizionali, fra cui le sostanze *prioritarie* e *pericolose prioritarie* (P e PP); sulle 3 stazioni di tipo A in chiusura di bacino significativo/di interesse del *Tidone*, *Trebbia* e *Nure*, parzialmente sospese, sono stati analizzati solo i pesticidi e i parametri di base, data la vocazione agricola del territorio sotteso.

Parametri addizionali – Sostanze Prioritarie e Prioritarie Pericolose (P e PP)

Numero CAS	Elemento	Tab. 1 All 1 DLgs 152/99	udm
7440-43-9	Cadmio PP	2.5	μg/L
7440-47-3	Cromo	20	μg/L
7439-97-6	Mercurio PP	0.5	μg/L
7440-02-0	Nichel P	75	μg/L
7439-92-1	Piombo (PP)	10	μg/L
7440-50-8	Rame	40	μg/L
7440-66-6	Zinco	300	μg/L
107-06-2	1,2 Dicloroetano P	10	μg/L
87-68-3	Esaclorobutadiene PP	0.1	μg/L
67-66-3	Triclorometano (cloroformio) P	12	μg/L
79-01-6	Tricloroetilene	10	μg/L
127-18-4	Tetracloroetilene (Percloroetilene)	10	μg/L
120-82-1	1,2,4 Triclorobenzene P	0.4	μg/L
309-00-2	Aldrin	0.01	μg/L
60-57-1	Dieldrin	0.01	μg/L
50-29-3	Diclorodifeniltricloroetano (DDT)	25	μg/L
608-73-1	Esaclorocicloesano PP miscela di isomeri	0.05	μg/L
118-74-1	Esaclorobenzene PP	0.03	μg/L
87-86-5	Pentaclorofenolo (PP)	2	μg/L

Dati quantitativi

Per lo stato quantitativo, vengono rilevate le **portate** e i livelli idrometrici sulle stazioni automatiche della Rete Regionale dal SIMC-Servizio IdroMeteoClima di Arpa; i dati sono accessibili in tempo reale all'indirizzo http://www.arpa.emr.it/sim/?idrologia/dati_e_grafici.

Per i laghi/invasi sono determinati con frequenza semestrale ulteriori parametri specifici quali Clorofilla α , Trasparenza, Ossigeno ipolimnico.

Rete Potabilizzazione

La Rete delle acque destinate alla produzione di acqua potabile consiste in 2 punti di captazione di acqua del T. Arda localizzati presso Case Bonini e la Diga di Mignano.

Stazioni della rete delle acque destinate a potabilizzazione.

Corpo idrico	Stazione	Codice	Tipo	Caratterizzazione		
T. Arda	Case Bonini	01140200		Mediante una briglia l'acqua viene convogliata al sistema di trattamento per l'utilizzo potabile (disinfezione), che si trova a valle della diga.		
T. Arda	Diga di Mignano	01140300	A2	Parte dell'acqua contenuta nell'invaso viene convogliata al sistema di trattamento per l'utilizzo potabile (disinfezione), che si trova immediatamente a valle.		

Rete Vita Pesci

La Rete di monitoraggio delle acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci, consta di 5 stazioni, di cui una coincidente con la rete ambientale (F. Trebbia, Pieve Dugliara). La frequenza di monitoraggio è mensile nelle stazioni di Ponte Travo sul Trebbia (perché conforme con deroga) e di Sperongia sull'Arda (perché di nuova istituzione), trimestrale nelle altre sui parametri analizzati per il calcolo della conformità: pH, BOD₅, ammoniaca indissociata, ammoniaca totale, nitriti, zinco totale e rame disciolto, temperatura, ossigeno disciolto, materiale in sospensione. Viene eseguito anche il monitoraggio biologico dei macroinvertebrati col metodo IBE, con frequenza semestrale. Nella tabella seguente si riporta l'elenco delle stazioni appartenenti alla rete per l'idoneità alla vita dei pesci con indicazione della designazione a Salmonidi/Ciprinidi.

Rete funzionale per l'idoneità delle acque superficiali alla vita dei pesci salmonicoli (S) e ciprinicoli (C).

ID tratto	Codice Stazione	Bacino Idrografico	Corpo idrico	Stazione	Descrizione del corpo idrico designato	Tipo di acque
PC3	01090300	Trebbia		Foce Aveto in Trebbia, a monte di Sanguineto	T. Aveto dal confine regionale alla foce nel T. Trebbia a monte di Sanguineto	S
PC1	01090500	Trebbia	F. Trebbia	Ponte Travo	F. Trebbia, dal confine regionale a Ponte Travo	S
PC2	01090600	Trebbia	F. Trebbia	Pieve Dugliara	F. Trebbia, da Ponte Travo a Pieve Dugliara	С
PC4	01110100	Nure	T. Nure	A monte Rio Camia	Parco Alta Val Nure e da T. Lavaiana a foce Rio Camia	S
PC5	01140100	Arda	T. Arda	Sperongia - II Sasso (Morfasso)	Tratto dal ponte sulla strada per la località Settesorelle al confine provinciale, a valle della confluenza del T. Lubiana	8

IL METODO DI CLASSIFICAZIONE DEI CORPI IDRICI SUPERFICIALI

Nelle more dell'applicazione della Dir. 2000/60/CE ed in attesa dell'emanazione dei decreti applicativi specifici, per classificare lo stato qualitativo delle acque superficiali si ricorre ad indicatori ed indici, previsti dal D.Lgs. 152/99, utili a determinare lo stato ecologico ed ambientale delle acque, ai fini del raggiungimento degli obiettivi di qualità ambientale fissati nel Piano Regionale di Tutela Acque (PTA 2005), recepiti nel Piano Territoriale di Coordinamento Provinciale (PTCP 2009). Lo Stato Ecologico dei corpi idrici superficiali esprime la complessità degli ecosistemi acquatici, e viene determinato dall'incrocio dell'indice **LIM** - Livello di Inquinamento dei Macrodescrittori, sintesi di parametri chimici e microbiologici di base, con l'**TBE** - Indice Biotico Esteso, espressione della composizione della comunità macrobentonica. Il LIM è espresso dalla somma del 75° percentile dei punteggi ottenuti dalla concentrazione di 7 specifici macrodescrittori, come indicato nella tabella seguente. L'IBE corrisponde alla media dei singoli valori rilevati durante l'anno nelle campagne di misura, distribuite stagionalmente o rapportate ai regimi idrologici più appropriati per il corso d'acqua indagato. I valori risultanti, compresi tra 14 (situazione ottimale) e 1 (massimo degrado), vanno espressi in funzione della corrispondente classe di qualità, determinata secondo gli abbinamenti riassunti sotto.

Livello di	Inquinamento	da Macroo	descrittori	(LIM)
LIVCIIO GI	THUMBINGHICH	aa maci o	4C3C CC	\ L _T ' <i> </i>

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
100- OD (% sat.)	≤ 10	≤ 20	≤ 30	≤ 50	> 50
$BOD_5(O_2 mg/L)$	< 2,5	≤4	≤8	≤ 15	> 15
COD (O ₂ mg/L)	< 5	≤ 10	≤ 15	≤ 25	> 25
NH ₄ (N mg/L)	< 0,03	≤ 0,10	≤ 0,50	≤ 1,50	> 1,50
NO ₃ (N mg/L)	< 0,3	≤ 1,5	≤ 5,0	≤ 10,0	> 10,0
Fosforo tot. (P mg/L)	< 0,07	≤ 0,15	≤ 0,30	≤ 0,60	> 0,60
<i>E.coli</i> (UFC/100 mL)	< 100	≤1.000	≤ 5.000	≤ 20.000	> 20.000
Punteggio	80	40	20	10	5
L.I.M.	480 – 560	240 – 475	120 – 235	60 – 115	< 60

Conversione dei valori IBE in Classi di Qualità e relativo giudizio

Classi di qualità	Valore di I.B.E.	Giudizio	Colore di riferimento
Classe I	10-11-12	Ambiente non alterato in modo sensibile	Azzurro
Classe II	8-9	Ambiente con moderati sintomi di	Verde
Classe III	6-7	Ambiente alterato	Giallo
Classe IV	4-5	Ambiente molto alterato	Arancione
Classe V	1-2-3	Ambiente fortemente degradato	Rosso

Lo **Stato Ecologico di un corpo idrico superficiale (SECA)** è rappresentato dall'intersezione tra LIM e IBE, dove il risultato peggiore tra i due determina la classe di appartenenza.

Stato Ecologico dei Corsi d'Acqua (SECA)

	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
I.B.E.	≥10	8-9	6-7	4-5	1,2,3
L.I.M.	480 – 560	240 – 475	120 – 235	60 – 115	< 60

Lo **Stato Ambientale del corso d'acqua (SACA)** si ottiene dal SECA e dai dati relativi alla presenza degli inquinanti chimici (parametri addizionali-sostanze pericolose, tabella 1-Allegato 1 del D.Lgs 152/99), secondo lo schema riportato nella seguente tabella.

Stato Ambientale dei Corsi d'Acqua (SACA)

Stato Ecologico ⇒	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
Concentrazione inquinanti Tab. 1:					
≤ Valore Soglia*	ELEVATO	BUONO	SUFFICIENTE	SCADENTE	PESSIMO
> Valore Soglia*	SCADENTE	SCADENTE	SCADENTE	SCADENTE	PESSIMO

^{*} I valori soglia sono stati definiti a partire dal 2003, quindi il SACA è determinato a partire dal 2003.

Lo stato di qualità ambientale delle acque superficiali è descritto in relazione al grado di scostamento rispetto alle condizioni di un corpo idrico di riferimento:

Definizione dello stato ambientale per i corpi idrici superficiali (SACA)

ELEVATO	Non si rilevano alterazioni dei valori di qualità degli elementi chimico-fisici ed idromorfologici per quel dato tipo di corpo idrico in dipendenza degli impatti antropici, o sono minime rispetto ai valori normalmente associati allo stesso ecotipo in condizioni indisturbate. La qualità biologica sarà caratterizzata da una composizione e un'abbondanza di specie corrispondente totalmente o quasi alle condizioni normalmente associate allo stesso ecotipo. La presenza di microinguinanti, di sintesi e non di sintesi, è paragonabile alle concentrazioni di fondo rilevabili
	nei corpi idrici non influenzati da alcuna pressione antropica
BUONO	I valori degli elementi della qualità biologica per quel tipo di corpo idrico mostrano bassi livelli di alterazione derivanti dall'attività umana e si discostano solo leggermente da quelli normalmente associati allo stesso ecotipo in condizioni non disturbate. La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da non comportare effetti a breve e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento.
SUFFICIENTE	I valori degli elementi della qualità biologica per quel tipo di corpo idrico si discostano moderatamente da quelli di norma associati allo stesso ecotipo in condizioni non disturbate. I valori mostrano segni di alterazione derivanti dall'attività umana e sono sensibilmente più disturbati che nella condizione di "buono stato". La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da non comportare effetti a breve e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento.
SCADENTE	Si rilevano alterazioni considerevoli dei valori degli elementi di qualità biologica del tipo di corpo idrico superficiale, e le comunità biologiche interessate si discostano sostanzialmente da quelle di norma associate al tipo di corpo idrico superficiale inalterato. La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da comportare effetti a medio e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento
PESSIMO	I valori degli elementi di qualità biologica del tipo di corpo idrico superficiale presentano alterazioni gravi e mancano ampie porzioni delle comunità biologiche di norma associate al tipo di corpo idrico superficiale inalterato. La presenza di microinquinanti, di sintesi e non di sintesi, è in concentrazioni da produrre gravi effetti a breve e lungo termine sulle comunità biologiche associate al corpo idrico di riferimento.

Laghi/Invasi artificiali

Alla definizione dello **Stato Ecologico dei Laghi (SEL)**, che si applica ai nostri 2 invasi artificiali (Molato e Mignano) concorrono parametri diversi rispetto ai corsi d'acqua, relativi allo stato trofico (trasparenza, $clorofilla \alpha$, ossigeno ipolimnico, fosforo) e riassunti nella tabella seguente. La classe da attribuire è determinata dal risultato peggiore tra i quattro parametri considerati.

Stato Ecologico dei laghi (SEL)

PARAMETRO	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
Trasparenza (m) (valore minimo annuo)	> 5	≤5	≤2	≤ 1,5	≤1
Ossigeno ipolimnico (% di sat.) (valore minimo annuo misurato nel periodo di massima stratificazione)	> 80%	≤80%	≤60%	≤ 40%	≤ 20%
Clorofilla "a" (μg/L) (valore massimo annuo)	< 3	≤6	≤ 10	≤ 25	> 25
Fosforo totale (P µg/L) (valore massimo annuo)	<10	≤ 25	≤ 50	≤ 100	> 100

Per lo **Stato Ambientale dei Laghi (SAL)**, si procede analogamente al SACA. Per la valutazione dei parametri riguardanti gli inquinanti chimici si considera la media aritmetica dei dati disponibili nel periodo di misura.

Stato qualitativo dei corpi idrici superficiali

La classificazione, ottenuta in base ai controlli ed alle analisi della rete regionale di monitoraggio della qualità ambientale, viene effettuata secondo quanto riportato nelle Delibere di Giunta Regionale n° 1420/2002 e 2135/2004. Il periodo preso in considerazione va dal 2000 al 2009. Vengono indicati in particolare i valori di LIM (Livello Inquinamento Macrodescrittori), IBE (Indice Biotico Esteso), SECA (Stato Ecologico) e SACA (Stato Ambientale) per tutto il periodo, per stazione di monitoraggio, per corpo idrico e per bacino d'appartenenza. Analogamente per i laghi, si indicano i valori di SEL e SAL per il periodo 2001÷2009.

Si evidenzia che il SACA e il SAL sono determinati solo sulle stazioni che devono raggiungere gli obiettivi, quelle cioè appartenenti ai bacini significativi o di interesse (stazioni AS e AI): nel 2009 sono state monitorate le 2 stazioni di tipo A sul Po a Castelsangiovanni e Piacenza; la stazione sul Trebbia a Pieve Dugliara; la stazione sul Chiavenna a Chiavenna Landi; la stazione sull'Arda a Villanova; l'invaso del Molato sul Tidone e l'invaso di Mignano sull'Arda.

Sono state tuttavia classificate anche le stazioni di Pontetidone sul Tidone, Foce in Po sul Trebbia e Ponte Bagarotto sul Nure ricavando l'indice SACA dal LIM e dai dati a disposizione, pur non disponendo di tutti gli elementi previsti: nella Tabella riportante SECA e SACA sono evidenziate con asterisco.

LIM 2000-2009

					0-20								
BACINO	CORPO IDRICO	STAZIONE	TIPO	LIM 2000	LIM 2001	LIM 2002	LIM 2003	LIM 2004	LIM 2005	LIM 2006	LIM 2007	LIM 2008	LIM 2009
PO	F. PO	C.S. Giovanni	AS	200	240	190	270	200	180	170	180	300	200
PO	F. PO	PC-MAP	AS	140	200	200	180	240	200	200	280	260	250
BARDONEZZA	BARDONEZZA	C.S. Giovanni	В	180	105	140	220	170	100	90	125	210	
CARONA- BORIACCO	T. BORIACCO	C.S. Giovanni	В	45	55	70	55	70	70	55	50	60	
TIDONE	T. TIDONE	Case Marchesi	В	230	360	340	380	380	380	340	400	380	340
TIDONE	T. LURETTA	Strada per Mottaziana	В	270	260	310	350	350	350	155	NC	NC	
TIDONE	T. TIDONE	Pontetidone	ΑI	260	340	360	420	270	400	220	NC	350	380
TREBBIA	F. TREBBIA	Valsigiara	В	400	480	440	480	440	520	480	520	480	480
TREBBIA	T. AVETO	Salsominore	В	480	520	520	520	440	480	480	520	480	480
TREBBIA	F. TREBBIA	Piancasale	В	440	360	440	480	380	400	420	520	440	460
TREBBIA	F. TREBBIA	Pieve Dugliara	AS	440	440	440	440	420	440	480	480	380	420
TREBBIA	F. TREBBIA	Foce in Po- Borgotrebbia	AS	260	390	320	280	250	320	440	480	480	440
NURE	T. NURE	Biana	В	400	400	480	440	400	380	400	440	440	480
NURE	T. NURE	P.te Bagarotto	AS	380	440	360	460	360	380	380	400	400	480
CHIAVENNA	T. CHERO	P.te str. Chero- Roveleto	В	330	420	350	350	340	350	370	350	350	370
CHIAVENNA	T. CHIAVENNA	Chiavenna Landi	Al	120	110	90	100	120	120	100	85	140	180
CHIAVENNA	T. VEZZENO	Sariano	В	340	360	320	270	340	260	340	320	360	
CHIAVENNA	T. RIGLIO	P.te str. Caorso- Chiavenna	В	120	240	135	165	195	145	145	75	130	
CAVO FONTANA	CAVO FONTANA	Apostolica di Soarza	В	75	55	70	70	85	75	85	85	65	
ARDA	T. ARDA	Case Bonini	В	360	420	380	400	420	420	480	440	480	440
ARDA	T. ARDA	Villanova	Al	150	230	130	110	100	100	100	110	140	160
ARDA	T. ONGINA	Vigoleno	В	230	270	230	160	230	270	260	260	400	
ARDA	T. ONGINA	Vidalenzo	В	65	110	105	110	155	135	125	110	130	195

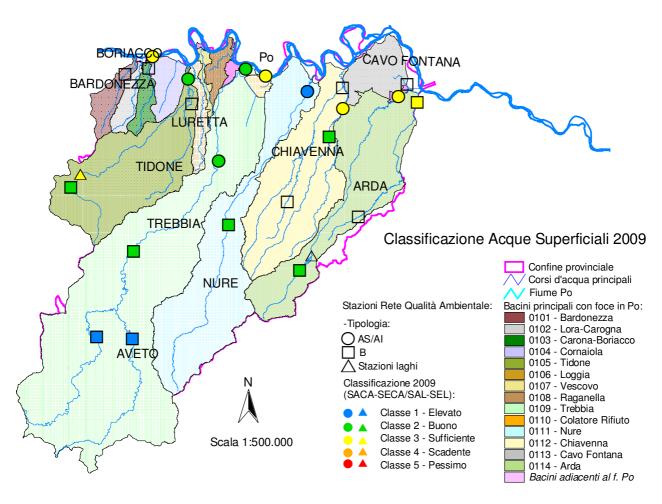
IBE 2000-2009

BACINO	CORPO IDRICO	STAZIONE	TIPO	IBE 2000	IBE 2001	IBE 2002	IBE 2003	IBE 2004	IBE 2005	IBE 2006	IBE 2007	IBE 2008	IBE 2009
РО	F. PO	C.S. Giovanni	AS	6	7	8_7	6	7	7_8	6_5	7	7	6_7
РО	F. PO	PC-MAP	AS	7	7	7	7	7	7	7	7	7	6_7
BARDONEZZA	BARDONEZZA	C.S. Giovanni	В	6	5	4	5_4	3	3	4	5	6	
CARONA- BORIACCO	T. BORIACCO	C.S. Giovanni	В	1	1	1	2	1	1_2	1	1_2	2	
TIDONE	T. TIDONE	Case Marchesi	В	11_12	10	10	9	10	10_11	10	_11_	12	9_10
TIDONE	T. LURETTA	Strada per Mottaziana	В	8	8	6_7	8		6	9_10	NC	6	
TIDONE	T. TIDONE	Pontetidone	Al	8_7	7_8	9	8	6	4_5	8	NC	7	
TREBBIA	F. TREBBIA	Valsigiara	В	11	10_11	11	10	10	10	10_11	10	11	13
TREBBIA	T. AVETO	Salsominore	В	10_11	10_11	10	9_10	9	10_11	10_11	11	11	11
TREBBIA	F. TREBBIA	Piancasale	В	9	9_10	10_11	9	9	9	9	10	9	10
TREBBIA	F. TREBBIA	Pieve Dugliara	AS	10_9	9	8_9	10	9_10	10	9	10	9	9
TREBBIA	F. TREBBIA	Foce in Po- Borgotrebbia	AS	9	9	8	8	7_8	7_8	7	7	8_9	
NURE	T. NURE	Biana	В	10_11	9	10_11	9_8	10_11	9	9	9_10	9	9
NURE	T. NURE	Ponte Bagarotto	AS	8	9	8_9	9	8	7	7	8	9	
CHIAVENNA	T. CHERO	P.te str. Chero- Roveleto	В	7	6	7	9	7	8_9	8	8	8	8
CHIAVENNA	T. CHIAVENNA	Chiavenna Landi	Al	4_5	7	6_7	6_7	7	7	7	7	6_7	7
CHIAVENNA	T. VEZZENO	Sariano	В	8	8	8	7	8_9	8_9	8	9_10	7_8	
CHIAVENNA	T. RIGLIO	P.te str. Caorso- Chiavenna	В	8_9	8	5_6	6_5	5	5_6	6_5	4	5	
ARDA	T. ARDA	Case Bonini	В	10_11	11_12	10_11	11	10	10	9_10	10	10	9
ARDA	T. ARDA	Villanova	Al	5_6	6_7	7	7	7	6_7	7_6	6_7	7	7
ARDA	T. ONGINA	Vigoleno	В	9	5_6	3_4	6	7	9	6	6	8_9	
ARDA	T. ONGINA	Vidalenzo	В	7_8	7	6	5	7	7	7	7	7	7

SECA 2000-2009

BACINO	CORPO IDRICO	STAZIONE	TIPO	SECA 2000	SECA 2001	SECA 2002	SECA 2003	SECA 2004	SECA 2005	SECA 2006	SECA 2007	SECA 2008	SECA 2009
PO	F. PO	C.S. Giovanni	AS	Classe 3									
PO	F. PO	PC-MAP	AS	Classe 3									
BARDONEZZA	R. BARDONEZZA	C.S. Giovanni	В	Classe 3	Classe 4	Classe 4	Classe 4	Classe 5	Classe 5	Classe 4	Classe 4	Classe 3	sospeso
CARONA- BORIACCO	T. BORIACCO	C.S. Giovanni	В	Classe 5	sospeso								
TIDONE	T. TIDONE	Case Marchesi	В	Classe 3	Classe 2								
TIDONE	T. LURETTA	Strada per Mottaziana	В	Classe 2	Classe 2	Classe 3	Classe 2	Classe 5	Classe 3	Classe 3	NC	NC	sospeso
TIDONE	T. TIDONE	Pontetidone	Al	Classe 2	Classe 3	Classe 2	Classe 2	Classe 3	Classe 4	Classe 3	NC	Classe 3	Classe 2*
TREBBIA	F. TREBBIA	Valsigiara	В	Classe 2	Classe 1	Classe 2	Classe 1	Classe 2	Classe 1				
TREBBIA	T. AVETO	Salsominore	В	Classe 1	Classe 1	Classe 1	Classe 2	Classe 2	Classe 1				
TREBBIA	F. TREBBIA	Piancasale	В	Classe 2	Classe 1	Classe 2	Classe 2						
TREBBIA	F. TREBBIA	Pieve Dugliara	AS	Classe 2	Classe 1	Classe 2	Classe 2						
TREBBIA	F. TREBBIA	Foce in Po-Borgotrebbia	AS	Classe 2	Classe 2	Classe 2	Classe 2	Classe 3	Classe 3	Classe 3	Classe 3	Classe 2	Classe 2*
NURE	T. NURE	Biana	В	Classe 2	Classe 2	Classe 1	Classe 2						
NURE	T. NURE	Ponte Bagarotto	AS	Classe 2	Classe 3	Classe 3	Classe 2	Classe 2	Classe 1*				
CHIAVENNA	T. CHERO	P.te str. Chero-Roveleto	В	Classe 3	Classe 3	Classe 3	Classe 2	Classe 3	Classe 2				
CHIAVENNA	T. CHIAVENNA	Chiavenna Landi	Al	Classe 4	Classe 4	Classe 4	Classe 4	Classe 3	Classe 3	Classe 4	Classe 4	Classe 3	Classe 3
CHIAVENNA	T. VEZZENO	Sariano	В	Classe 2	Classe 2	Classe 2	Classe 3	Classe 2	Classe 2	Classe 2	Classe 2	Classe 3	sospeso
CHIAVENNA	T. RIGLIO	P.te str. Caorso- Chiavenna L.	В	Classe 3	Classe 2	Classe 4	Classe 3	Classe 4	Classe 4	Classe 3	Classe 4	Classe 4	sospeso
CAVO FONTANA	C.FONTANA	Apostolica di Soarza	В	Classe 4	Classe 5	Classe 4	sospeso						
ARDA	T. ARDA	Case Bonini	В	Classe 2	Classe 1	Classe 2							
ARDA	T. ARDA	Villanova	Al	Classe 4	Classe 3	Classe 3	Classe 4	Classe 3	Classe 3				
ARDA	T. ONGINA	Vigoleno	В	Classe 3	Classe 4	Classe 5	Classe 3	Classe 3	Classe 2	Classe 3	Classe 3	Classe 2	sospeso
ARDA	T. ONGINA	Vidalenzo	В	Classe 4	Classe 4	Classe 4	Classe 4	Classe 3	Classe 3	Classe 3	Classe 4	Classe 3	Classe 3

SEL e SAL 2001-2009


BACINO	CORPO IDRICO	STAZIONE	TIP O	SEL 2001	SEL 2002	SEL 2003	SAL 2003	SEL 2004	SAL 2004	SEL 2005	SAL 2005	SEL 2006	SAL 2006	SEL 2007	SAL 2007	SEL 2008	SAL 2008	SEL 2009	SAL 2009
TIDONE	Tidone	Diga Molato	AS	nc	nc	Classe 2	Buono	Classe 3	Suffic.	nc	nc	Classe 3	Suffic.	Classe 2	Buono	Classe 3	Suffic.	Classe 3	Suffic.
ARDA	Arda	Diga Mignano	AS	Classe 3	Classe 3	Classe 2	Buono	Classe 3	Suffic.	Classe 3	Suffic.	Classe 2	Buono	Classe 3	Suffic.	Classe 3	Suffic.	nc	nc

SACA (SECA 2000-2002) * 2003-2009

BACINO	CORPO IDRICO	STAZIONE	ГІРО	SECA 2000	SECA 2001	SECA 2002	SACA 2003	SACA 2004	SACA 2005	SACA 2006	SACA 2007	SACA 2008	SACA 2009
PO	F. Po	C.S. Giovanni	AS	Classe 3	Classe 3	Classe 3	Suffic.	Suffic.	Suffic.	Suffic.	Suffic.	Suffic.	Suffic.
PO	F. Po	PC-MAP	AS	Classe 3	Classe 3	Classe 3	Suffic.	Suffic.	Suffic.	Suffic.	Suffic.	Suffic.	Suffic.
BARDONEZZA	Bardonezza	C.S. Giovanni	В	Classe 3	Classe 4	Classe 4							
CARONA-BORIACCO	Boriacco	C.S. Giovanni	В	Classe 5	Classe 5	Classe 5							
TIDONE	Tidone	Case Marchesi	В	Classe 3	Classe 2	Classe 2							
TIDONE	Luretta	Strada per Mottaziana	В	Classe 2	Classe 2	Classe 3							
TIDONE	Tidone	Pontetidone	ΑI	Classe 2	Classe 3	Classe 2	Buono	Suffic.	Scadente	Suffic.	NC	Suffic.	Buono**
TREBBIA	Trebbia	Valsigiara	В	Classe 2	Classe 1	Classe 2							
TREBBIA	Aveto	Salsominore	В	Classe 1	Classe 1	Classe 1							
TREBBIA	Trebbia	Piancasale	В	Classe 2	Classe 2	Classe 2							
TREBBIA	Trebbia	Pieve Dugliara	AS	Classe 2	Classe 2	Classe 2	Buono	Buono	Buono	Buono	Elevato	Buono	Buono
TREBBIA	Trebbia	Foce in Po-Borgotrebbia	AS	Classe 2	Classe 2	Classe 2	Buono	Suffic.	Suffic.	Suffic.	Suffic.	Buono	Buono**
NURE	Nure	Biana	В	Classe 2	Classe 2	Classe 1							
NURE	Nure	Ponte Bagarotto	AS	Classe 2	Classe 2	Classe 2	Buono	Buono	Suffic.	Suffic.	Buono	Buono	Elevato**
CHIAVENNA	Chero	P.te str. Chero-Roveleto	В	Classe 3	Classe 3	Classe 3							
CHIAVENNA	Chiavenna	Chiavenna Landi	Al	Classe 4	Classe 4	Classe 4	Scadente	Suffic.	Suffic.	Scadente	Scadente	Suffic.	Suffic.
CHIAVENNA	Vezzeno	Sariano	В	Classe 2	Classe 2	Classe 2							
CHIAVENNA	Riglio	Chiavenna L.	В	Classe 3	Classe 2	Classe 4							
CAVO FONTANA	C. Fontana	Apostolica di Soarza	В	Classe 4	Classe 5	Classe 4							
ARDA	Arda	Case Bonini	В	Classe 2	Classe 2	Classe 2							
ARDA	Arda	Villanova	Al	Classe 4	Classe 3	Classe 3	Scadente	Scadente	Scadente	Scadente	Scadente	Suffic	Suffic.
ARDA	Ongina	Vigoleno	В	Classe 3	Classe 4	Classe 5							
ARDA	Ongina	Vidalenzo	В	Classe 4	Classe 4	Classe 4							

^{*}Negli anni 2000-2002 non erano ancora state definite le conc. limite per le sostanze pericolose, che integrano il giudizio del SECA, individuando il SACA **il SACA è stato comunque calcolato nelle stazioni parzialmente sospese nella rete transitoria 2009, anche se non sono stati determinati IBE e tutti i parametri addizionali.

Classificazione 2009 dei corpi idrici superficiali, in pianta.

Le stazioni raffigurate dai rispettivi simboli *vuoti* non sono state classificate perché sospese nel monitoraggio della Rete *TRANSITORIA* 2009.

LA QUALITÀ AMBIENTALE

Il 2009 rappresenta un anno di passaggio da un sistema di monitoraggio all'altro, senza riferimenti normativi certi e soprattutto senza riferimenti tecnico-operativi certi. Gli obiettivi di qualità ambientale da raggiungere slittano al 2015 senza fasi intermedie e prevedono direttamente il raggiungimento dello **stato di qualità ambientale** "**buono**" o comunque il non peggioramento degli stati ambientali raggiunti.

Nelle stazioni dove è stato mantenuto il monitoraggio attraverso la Rete *Transitoria* in attesa della piena applicazione della Dir. 2000/60/CE, si confermano le tendenze di lungo periodo, a testimonianza della situazione complessivamente favorevole dei corpi idrici superficiali in provincia di Piacenza rispetto alla realtà regionale, che è notevolmente più compromessa.

Le classi di **qualità peggiori** (Classe 5, Qualità Pessima-Classe 4, Qualità Scadente) in ambito provinciale non si riscontrano più, proprio perché i bacini storicamente più compromessi (Bardonezza, Carona-Boriacco, Riglio, Cavo Fontana) non sono stati monitorati nel 2009 per i motivi menzionati in premessa (criteri di esclusione).

Le classi di qualità migliori si confermano a pieno titolo nel bacino del Trebbia, sulle stazioni di alta valle presso Valsigiara (Ottone) e Salsominore sull'affluente Aveto, in Classe 1-Qualità Elevata; nei bacini del Tidone e dell'Arda nelle stazioni di bacino montano presso Case Marchesi e Case Bonini è presente la Classe 2-Qualità Buona, come anche nel Chero (bacino del Chiavenna). Classe 3-Qualità Sufficiente per il Chiavenna a Chiavenna Landi, per l'Arda a Villanova e per l'Ongina a Vidalenzo; Classe 3 confermata anche per il Po in entrambe le stazioni di monitoraggio (C.S.Giovanni e Piacenza). Nelle stazioni di chiusura di bacino del Tidone (Pontetidone), del Trebbia (Foce in Po) e del Nure (Ponte Bagarotto), parzialmente sospese nella rete transitoria 2009, è stato comunque calcolato il SACA, anche in assenza dello specifico monitoraggio previsto, utilizzando i soli dati disponibili: se per il Trebbia la Classe 2-Qualità Buona rientra nello standard di qualità storico (vedi trend del SACA 2000÷2009 nella stazione cod. 01090700), per il Tidone (risultato in Classe 2-Qualità Buona) e soprattutto il Nure (risultato in Classe 1- Qualità Elevata!) il monitoraggio condotto parzialmente (senza IBE, fondamentalmente) conferma che il giudizio esclusivamente chimico sull'acqua (espresso da LIM eccellenti) non descrive compiutamente lo stato complessivo dell'ecosistema fluviale; infatti nel nuovo monitoraggio, applicato a partire da gennaio 2010, il monitoraggio biologico riveste importanza predominante rispetto a quello chimico-fisico, considerato di supporto all'interpretazione dei risultati del biomonitoraggio.

Il **Trebbia** si conferma comunque, anche per il 2009, una delle realtà più pregiate in ambito regionale e nazionale, motivo per cui è stato oggetto di sperimentazione da parte di esperti ricercatori relativamente al **monitoraggio biologico** del *macrobenthos multihabitat proporzionale*, delle *macrofite acquatiche*, delle *diatomee bentoniche*, presso le stazioni di **Valsigiara**, **Piancasale**, **Pieve Dugliara**, siti candidati a diventare siti-reference per il nuovo monitoraggio, ai sensi del D. M. 56/2009; anche sul **Nure** sono stati sperimentati i nuovi metodi con l'obiettivo di trovare stazioni di riferimento anche nel tratto più antropizzato della pianura: il tratto considerato è compreso fra Biana (ponte per Spettine) e Carmiano ed il sito sperimentato è stato quello di **Carmiano** a monte dell'abitato. Il **Nure** mostra infatti condizioni ambientali buone anche nel tratto più a valle: **Biana** (ponte per Spettine) mostra un SECA in Classe 2 e **Ponte Bagarotto**, stazione in chiusura di bacino, sospesa nella rete transitoria 2009 come si diceva sopra, mostra un LIM di livello 1, che corrisponde alla qualità di base più elevata possibile (punteggio=480 su un range 480-560, valore massimo).

In generale è importante sottolineare come i corpi idrici superficiali della provincia di Piacenza mostrino **trend positivi** nel tempo, nel senso che le classi di qualità, lette anche attraverso gli indici più specifici del LIM e dell'IBE, non peggiorano, ma si mantengono anche nei bacini più compromessi (come il Chiavenna, l'Arda) nella stesso livello di qualità o addirittura migliorano, raggiungendo quello superiore (ad es. LIM in entrambe le stazioni sul Nure; IBE a Piancasale sul Trebbia); e tutto questo nonostante le pressioni antropiche non siano diminuite nell'ultimo anno, né come quantità, né come intensità.

Lo **stato ambientale dei laghi** artificiali significativi, ossia gli invasi del Molato sul T. Tidone e di Mignano sul T. Arda, è definito sulla base della valutazione dello stato trofico attraverso la determinazione dei parametri di base: trasparenza, clorofilla α , ossigeno ipolimnico e fosforo.

Lo Stato Ambientale relativo al 2009 è stato determinato solo sull'invaso del Molato, perché la Diga di Mignano è stata in manutenzione per lavori di ristrutturazione (svaso totale), il che ha impedito la raccolta dei campioni d'acqua nel periodo estivo (fase di massimo rimescolamento).

Sono sempre valori di Trasparenza molto bassi a portare l'indice SAL in Classe 3-Sufficiente per il Molato, mentre gli altri parametri che determinano la qualità e il livello di eutrofizzazione (ossigeno ipolimnico, clorofilla α e fosforo) mostrano valori da prima e seconda classe. Rispetto agli altri invasi monitorati in Regione (Brasimone, Suviana-Bologna, Ridracoli-Forlì), le due dighe piacentine sono penalizzate dalle piccole dimensioni, che portano gli inquinanti a concentrarsi per effetto della diminuzione del volume; e la trasparenza, come si diceva sopra, può essere causata anche da fenomeni di normale degradazione di organismi vegetali e animali, presenti naturalmente negli ecosistemi lacuali.

Per quanto riguarda la rete a specifica destinazione funzionale per il mantenimento della **vita di specie ittiche** salmonicole e ciprinicole, il 2009 vede in tutte le stazioni di monitoraggio confermata la conformità (in deroga per le temperature) alla designazione ad acque salmonicole per l'Aveto (prima della confluenza in Trebbia a monte di Sanguineto), per il Trebbia (a Travo), per l'Arda (a Sperongia, Morfasso) ed il Nure (a monte del Rio Camia); confermata anche la conformità ad acque ciprinicole per il Trebbia a Pieve Dugliara. I solidi sospesi relativamente elevati confermano anche per il 2009 un trasporto solido aumentato rispetto al passato, senza tuttavia comprometterne la conformità.

Conformità 2009 della rete delle acque salmonicole (S) e ciprinicole (C)

ID tratto	Bacino Idrografico	Corpo idrico	Stazione	Descrizione del corpo idrico designato	Tipo di acque	Conf. 2009
РС3	Trebbia	T. Aveto	Foce in Trebbia, a monte di Sanguineto	T. Aveto dal confine regionale alla foce nel T. Trebbia a monte di Sanguineto	S	SI*
PC1	Trebbia	F. Trebbia	Ponte Travo	F. Trebbia, dal confine regionale a Ponte Travo	S	SI*
PC2	Trebbia	F. Trebbia	Pieve Dugliara	F. Trebbia, da Ponte Travo a Pieve Dugliara	С	SI
PC4	Nure	T. Nure	A monte Rio Camia	Parco Alta Val Nure e da T. Lavaiana a foce Rio Camia	S	SI*
PC5	Arda	T. Arda	Sperongia - Il Sasso (Morfasso)	Tratto dal ponte sulla strada per la località Settesorelle al confine provinciale, a valle della confluenza del T. Lubiana	S	SI*

^{*} conformità assegnata con deroga

BIOMONITORAGGIO 2009 condotto sulla Rete Vita-Pesci

ID	Corpo idrico	Stazione	data	N° specie	IBE	CQ	data	N° specie	IBE	CQ
PC3	T. Aveto	Foce in Trebbia, a monte di Sanguineto	25/06/2009	23	10	I	27/10/2009	17	10	I
PC1	F. Trebbia	Ponte Travo	25/06/2009	13	8	II				
PC4	T. Nure	A monte Rio Camia	19/06/2009	23	11	I				
PC5	T. Arda	Sperongia - Il Sasso (Morfasso)	30/06/2009	18	10	I	21/10/2009	15	9_10	II_I
PC2	F. Trebbia	Pieve Dugliara	27/03/2009	11	8_7	II_III	20/05/2009	19	9	II
			30/09/2009	20	9_10	ILI				