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A B S T R A C T   

Sensor based monitoring systems have been indicated as a promising tool to increase information on spatio- 
temporal distribution of air pollution but several issues have been raised about the accuracy of such monitors 
when used in the field. The study aimed at assessing the performance of sensor based systems after multiple 
relocation in different seasons and sites. The systems included electrochemical sensors to measure NO2 and O3 
concentrations. The approach consisted in two-week field calibration of each device at a reference monitoring 
station and the test of the calibrated device at different reference station sites. The main specific goal was a 
comparison of sensor performance considering site-specific (SS) and no site-specific (no_SS) calibration, i.e. 
calibration and testing carried out or not at sites with similar characteristics. Calibration was performed by 
season using random forest (RF) models. Very good performance was found for calibrated O3 sensors with R2 ≥

0.82 regardless of seasons and sites. Mean normalized root mean square error (nRMSE) was around 7% and 6% in 
winter and summer tests, respectively. Very good performance of sensor systems was observed also for NO2 
during winter (R2 ≥ 0.84) with much better accuracy for SS compared to no_SS calibration (nRMSE equal to 6% 
and 17%, respectively). A marked decrease of performance was observed for NO2 sensors during summer. Our 
results show a good potential of sensor based systems after SS field calibration in increasing information on the 
distribution of air pollution at high spatial and temporal resolution.   

1. Introduction 

Air pollution is associated with a range of diseases, symptoms and 
conditions that impair health (WHO, 2013). Despite a significant 
decrease in air pollutant concentrations observed in many developed 
countries over the last decades, air quality still represents a major public 
concern particularly for people living in urban and suburban areas as 
they are relatively more exposed (EEA, 2018). 

The Air Quality Directive 2008/50/EC for European Union and 
similar legislation in other countries define the criteria for air quality 
monitoring and the reference measurement methods that States and 
environmental agencies shall apply when monitoring air quality. The 
primary role in air quality assessment is assigned to fixed-site stations 
equipped with reference grade monitors, but their high costs of instal-
lation and maintenance allow only for a relatively sparse monitoring, 
which is not anymore adequate to meet the increasing needs and de-
mand of detailed air quality information. 

In order to increase information on spatio-temporal distribution of 
air pollution, supplementary techniques have been proposed. In 
particular, during the last decade also regulatory bodies such as EU 
Commission and US EPA (Karagulian et al., 2019; Spinelle et al., 2013; 
Williams et al., 2014, 2019) have recognized the importance of new 
monitoring technologies based on different type of sensors. Air quality 
sensors have produced such high expectations to the point of making 
some researchers talk about “paradigm shift of air pollution monitoring” 
(Snyder et al., 2013). The underlying idea is that a cost-effective 
approach for air quality monitoring would be the implementation of 
mixed networks involving both reference-grade monitors as well as 
emerging sensor technologies (Cao et al., 2020; Mead et al., 2013). 
Sensor use may affect a wide range of possible applications including 
high resolution spatial mapping and hot-spot identification (Gulia et al., 
2020), emergency intervention, near-source monitoring (Kanabkaew 
et al., 2019), mobile and personal monitoring (Duvall et al., 2016; 
Jovašević-Stojanović et al., 2015; Park et al., 2020). Epidemiological 
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studies would also greatly benefit from more detailed information in 
terms of exposure assessment (Larkin and Hystad, 2017). The main 
advantages are related to the fact that sensor systems are small and 
portable, apparently easy to use and deploy, and often low cost or at 
least much less expensive than reference instruments. 

However, despite the high expectations and potential pros, research 
and regulatory bodies have raised several issues related to the accuracy 
of such monitors including problems of stability, cross-sensitivity, 
repeatability and reproducibility (Castell et al., 2017; Morawska et al., 
2018). Main current calibration solutions from the manufactures are 
limited to sensor testing in the laboratory under controlled conditions. 
This approach often provides unsatisfactory results during ambient air 
monitoring making the field calibration a necessary phase when using 
air quality sensors (Kelly et al., 2017; Mijling et al., 2018; Spinelle et al., 
2017). However, also field calibration is associated with problems 
related to generalizability of specific calibration parameters and models. 

The issue is relevant when sensors are calibrated and used at the 
same place because of the limited range of environmental conditions 
experienced during the calibration period. But the problem becomes 
significantly more important when sensors are calibrated in a place and 
used for monitoring campaigns in other places. Indeed, calibration pa-
rameters may be site-specific with an additional possible influence of 
sensor handling and transport. Unfortunately, while multiple relocation 
is a key characteristic of most the air quality sensors system applications 
in the real world, almost all published studies analyzed sensor perfor-
mance considering calibration and testing at the same site. In this 
manuscript, we investigated the performance of sensor based moni-
toring systems after relocation. The assessment was based on multiple 
tests, each including field calibration of the sensor at one site using data 
from a reference monitoring station and the test of the performance of 
the calibrated sensor at other locations of the air quality monitoring 
network of the Emilia-Romagna region. We calibrated and tested NO2 
and O3 sensors in sites with different characteristics and in different 
seasons. Main specific goal was related to compare performance of 
sensors considering site-specific (SS) and no site specific (no_SS) cali-
bration, i.e. calibration carried out or not at sites with similar charac-
teristics of those of the relocation sites. 

2. Methods 

2.1. Sensor system 

The monitoring campaigns were carried out with three units (pods) 
of a commercial sensor system called AQMesh. AQMesh pods (Envi-
ronmental Instruments Ltd., UK) are portable, small (22 cm 16 cm × 20 
cm) and light (<2 kg) instruments consisting of one box that includes a 
NO2 sensor (Alphasense NO2-B43F), a NO sensor (Alphasense NO-B4), a 
O3 sensor (Alphasense OX-B431) and three solid state sensors for tem-
perature (T), relative humidity (RH) and atmospheric pressure (P). 
Electrochemical sensors provide concentration of the gases by 
measuring the positive or negative currents generated by reactions be-
tween the gases and an electrode. In particular, the core of electro-
chemical sensors consists of a “working” electrode, a “counter” 
electrode, and usually a “reference” electrode along with a liquid elec-
trolyte. Gas penetrates through a membrane inside the sensor housing. 
Once the gas reaches the working electrode, an electrochemical oxida-
tion or reduction (for NO2 and O3) reaction occurs. Oxidation causes the 
flow of electrons from the working electrode to the counter electrode 
through an external circuit while reduction is associated to the flow of 
electrons from the counter electrode to the working electrode. The 
electric current is proportional to the concentration of gas and the 
external circuit detect and amplifies this current. 

A lithium metal battery provides power supply for about two years 
and a data transmission module sends the collected data to a server via a 
GSM connection. An IP65 enclosure guarantees protection from water 
and dust as well as other meteorological agents. Data from gas sensors 

are post-processed by a proprietary algorithm of the manufacturing 
company, aiming at correcting the effect of temperature, relative hu-
midity and cross-interferences due to the presence of other gaseous 
pollutants. The data can then be downloaded from a dedicated website. 
The instruments have been widely used across the world and are the 
backbone of several high-resolution real time air pollution monitoring 
networks such as that developed within the Breathe London project 
(EDF Europe, 2020). 

2.2. Measurement sites and reference instruments 

The measurement campaigns were performed in the province of 
Parma and Modena (Fig. 1). The area is located in the southern part of 
the Po plain, northern Italy, and is affected by high levels of air pollution 
(Bigi and Ghermandi, 2016). The main urban areas of Parma and 
Modena have about 197,000 and 186,000 inhabitants (2018), respec-
tively, and are at a distance of about 50 km. Sensor systems were cali-
brated and tested for accuracy using six fixed site monitoring stations 
belonging to the air quality monitoring network of the Regional Agency 
for Environment, Prevention and Energy of Emilia-Romagna (“Arpae”). 
Following European Decision 2011/850/EU, the classification of the 
stations was based on two indicators: “type of area” (urban, suburban, 
rural) and “type of station” (background, traffic, industrial). Therefore 
the expression “sites with similar characteristics” used throughout this 
paper must be interpreted as sites belonging to the same EU classifica-
tion. An urban background station (UB) and an urban traffic station (UT) 
were available in each city. UB stations are located in large urban public 
parks while UT stations are located close to trafficked streets. Sensor 
calibration and testing included also the two suburban background 
stations (SB) available in each province: 1) Colorno (about 9000 in-
habitants) at 13 km from Parma; and 2) Carpi (about 67,000 in-
habitants) at 20 km from Modena. SBstations are located in residential 
areas with low traffic. The exact location of all monitoring sites are re-
ported in Table 1S, Supplementary Information). The stations are 
equipped with reference-grade analysers for continous measurement, i. 
e. chemiluminescence for Nitrogen Oxides (EN14211:2012) and UV 
absorption for Ozone (EN14625:2012). The monitoring stations work 
under the EN 9001:2015 quality assurance protocol. The AQMesh pods 
were installed on the roof of the fixed site monitoring stations. 

2.3. Measurement campaigns 

All pods were co-located for 1 month at the same fixed site stations to 
assess agreement among the sensor systems. The winter co-location 
campaign started on 14 Dec 2018 ending on 14 Jan 2019 while the 
summer one started on 1 August 2019 ending on 1 September 2019. For 
the winter season the co-location site was next to the traffic station while 
for the summer season the co-location site was next to an urban back-
ground station. 

The other monitoring campaigns were conducted in the period 
January-August 2019 following the scheme sketched out in Fig. 2. The 
monitoring periods are specified in Table 1. Three campaigns were 
carried out during the Jan-Feb period (from now on “winter season”) 
while the other three campaigns during the Jun-Aug period (from now 
on “summer season”). The sequence of relocation was as follows: 1) all 
pods initially co-located at the UT site in Parma; 2) each pod placed at a 
different type of site in the province of Parma (UT, UB, SB); 3) each pod 
moved at the corresponding type of site in the province of Modena; 4 and 
5) each pod placed again at the same type of sites in the province of 
Parma and Modena, respectively; 6) all pods co-located at the UB site in 
Parma. Each campaign lasted 14 days. The performance analysis 
considered only 14-days periods and therefore only half of the co- 
location periods. 
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2.4. Calibration models and metrics for performance evaluation 

Several algorithms have been tested in literature for sensor calibra-
tion spanning from univariate or multivariate linear regression models 
(Mijling et al., 2018) to machine learning techniques such as Artificial 
Neural Networks (Esposito et al., 2016; Spinelle et al., 2015), Support 
Vector Machine (Bigi et al., 2018; De Vito et al., 2018), Random Forest 
(Zimmerman et al., 2018) and Hybrid models (Malings et al., 2019). 
Calibration procedures involving non-linear methods generally outper-
form those using classical statistics, and better capture the effects of 
environmental factors on sensor response. Based on recent literature 
findings (Bigi et al., 2018; Zimmerman et al., 2018) and after some 
preliminary analysis, a hybrid random forest - linear regression model 
was adopted in this study. A RF model is a Supervised Learning algo-
rithm which uses ensemble learning method for solving regression or 
classification problems (Breiman, 2001). It constructs a multitude of 
decision trees using a bootstrapped random sample from the training 

data set (in our case training data set corresponds to calibration data 
set). Any single tree is split into sub-nodes by considering a random 
subset of the input variables according to which is the strongest pre-
dictor of the response. The final output of the random forest model is the 
average of the prediction from each tree. The trained model is then used 
to make predictions on new input data. 

The most critical limitation of random forest model is the difficulty in 
predicting new outcomes outside the domain of input variables in the 
training dataset. For this reason, following Zimmerman et al., (2018) the 
standard random forest model was modified to become a hybrid random 
forest - linear regression model. In particular, when air pollutant con-
centration in the testing dataset exceeded the 98◦ percentile of the 
concentration measured by the reference monitor during the corre-
sponding training period, a linear model was used instead of the random 
forest model. The parameters of the linear model were calculated using 
the 30% highest concentrations of the training dataset. This approach 
should combine the pros of the random forest model, i.e. its ability to 

Fig. 1. Location of the monitoring sites. UB= Urban background station. UT= Urban traffic station. SB= Suburban traffic station.  

Fig. 2. Pod relocation phases for the winter and summer season.  
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capture complicated nonlinear relationships between various inputs and 
the target output, with the ability of a simple linear model to extrapolate 
beyond the set of data on which the model is trained. A random forest - 
linear model was built for each calibration dataset including as input 
variables 1-h averaged raw sensor gas concentrations (NO, NO2 and O3), 
T, and RH. Calibration models were constructed only for the NO2 and O3 
sensors, which are the most important from a regulatory point of view. 
The hyper-parameters were individually tuned for each sensor unit and 
each pollutant. To maximize utilization of the training data set, a k-fold 
cross-validation approach was used. A k-fold cross-validation divides the 
data into k equal-sized groups (where k is specified by the user), and k 
repeats are used to tune the model. This helps to minimize bias in 
training data selection when predicting new data and ensures that every 
point in the training window is used to build the model. 5-fold cross 
validation with 3-repeats was used for all calibration models. The data 
collected during each monitoring campaign (i.e. the data collected with 
each pod in each period in each site) were coupled one by one with the 
data from the other monitoring campaigns carried out with the same pod 
in other sites. Each dataset was then used both as calibration and testing 
dataset. This was done both to increase the number of tests but also 
because in real world applications is sometimes more convenient to 
consider calibration phase after the deployment phase (e.g. in emer-
gency interventions). The performance of calibrated sensors were 
analyzed comparing the set of coupled datasets based on whether cali-
bration and testing dataset were collected at site with similar charac-
teristics (site-specific calibration, from now on SS calibration), or not 
(no_SS calibration). 

All calculation related to calibration procedure and analysis of per-
formance of calibrated pods are performed under R software (R Core 
Team, 2019). In particular, random forest models were run using “rf” 
function of the package “caret” (Kuhn, 2008) with the subset of 
explanatory variables randomly selected at each node (“mtry” param-
eter) tuned for each pollutant, calibration site and period through RMSE 
minimization. Metrics to quantitatively compare the calibrated data of 

pods with the reference monitor in the testing datasets included the 
coefficient of determination (R2), the Root Mean Square Error (RMSE) 
and its normalized value (nRMSE). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(PODi − Refi)

N

√

nRMSE =
RMSE

σref  

where N is the number of measurements, PODi and Refi are the i-th 
values of pod and reference measurements, and σref is the standard de-
viation of reference measurements. T-test for paired data was used to 
assess the statistical significance of differences between sensor and 
reference monitor. 

Target diagram was also used to show the disentangled contribution 
of random and systematic errors to the total nRMSE. In particular, we 
constructed diagrams showing the centered root mean square error 
(nCRMSE, which is nRMSE corrected for bias) and the normalized mean 
bias error (nMBE) for each calibration-testing data set. Similarly to the 
definition of nRMSE, normalization consisted in dividing each statistical 
indicator by the standard deviation of the data measured by reference 
monitors. Points with the same distance from the origin have equal 
nRMSE. The CRMSE is in the left side of the plane if model standard 
deviation is smaller than the standard deviation of the reference data, 
and vice versa. 

3. Results 

Table 1 provides an overview of NO2 and O3 concentration measured 
by reference stations during the monitoring campaigns. In addition, the 
table reports temperature and relative humidity data as measured by the 
pods. When the pods were co-located the indicators refer to pod 1 
(differences among the pods were within 1% for T and 3% for RH). 

Table 1 
Overview of mean, minimum and maximum values of O3 and NO2 concentrations measured by reference stations during the six monitoring periods used to test sensor 
performance. Temperature (T) and relative humidity (RH) data measured by the PODs are also reported.     

NO2 (μg/m3) O3 (μg/m3) T (◦C) RH (%) 

Period Province Ref. station type Mean (Min - Max) Mean (Min - Max) Mean (Min - Max) Mean (Min - Max) 

Winter 
Period 1 Parma Urban Traffic (UT) 48.4  3.4 78.2 
(1-14 Jan 19)   (6 - 122)  (-3.7 - 16.1) (31.4 - 96.7) 
Period 2 Parma Urban Traffic (UT) 49.5  3.2 78.2 
(15-28 Jan 19)   (10 - 121)  (-2.7 - 11.1) (43.1 - 92.6)  

Parma Urban Background (UB) 34.6 13.6 3.2 78.4    
(7 - 74) (0 - 56) (-3.2 - 15.1) (34.8 - 94.4)  

Parma Suburban Background (SB) 27.5 11.1 2.4 82.9    
(5 - 51) (0 - 49) (-5.3 - 12) (48 - 95.1) 

Period 3 Modena Urban Traffic (UT) 62.8  7.7 63.4 
(6-19 Feb 19)   (14 - 176)  (0.2 - 18.8) (32.2 - 87.3)  

Modena Urban Background (UB) 45.8 28.3 6 69.3    
(11 - 133) (2 - 94) (-3.1 - 19.1) (27 - 93.3)  

Modena Suburban Background (SB) 33.9 19.4 6.5 69.6    
(6 - 84) (4 - 99) (-0.9 - 17.4) (33.9 - 90.5) 

Summer 
Period 4 Parma Urban Traffic (UT) 24.4  30.6 54.8 
(24 Jun - 7 Jul 19)   (6 - 107)  (20.2 - 41.6) (33.7 - 79.8)  

Parma Urban Background (UB) 11.3 106.3 28.6 57.2    
(2 - 36) (32 - 204) (19.3 - 39.1) (32.5 - 81.5)  

Parma Suburban Background (SB) 12.3 98 29.7 56.3    
(3 - 47) (10 - 224) (18.4 - 41.3) (27.1 - 88.8) 

Period 5 Modena Urban Traffic (UT) 33.7  27.3 59.5 
(15-28 Jul 19)   (6 - 111)  (17.2 - 41) (34.2 - 90.5)  

Modena Urban Background (UB) 17.5 80.7 26.5 61.4    
(1 - 60) (6 - 172) (15.4 - 41.3) (30.8 - 89.5)  

Modena Suburban Background (SB) 19.4 83.5 26.8 61.8    
(4 - 58) (8 - 182) (15.7 - 40.8) (27.4 - 90.6) 

Period 6 Parma Urban Background (UB) 9.1 79.4 26.4 60.4 
(1-14 Aug 19)   (2 - 28) (17 - 151) (16.1 - 36.9) (34.2 - 81)  
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The meteorological conditions were quite variable within and among 
the monitoring campaigns and taken together they were representative 
of the typical conditions of each season. 

The missing data due to sensor failure were a tiny percentage and no 
data were removed as anomalous from the dataset. 

3.1. Intercomparison between pod raw data and reference measurements 

The two one-month pod co-location data were used to inter-compare 
raw data (i.e. pod measurement data before field calibration) and 
compare them with the data collected by the reference measurements. 
Very high correlation among pods and with reference monitor were 
found for O3 during the summer co-location campaign (R ≥ 0.97). Very 
high correlations (R ≥ 0.97) were also observed between NO2 sensors for 
both winter and summer co-location. Very high correlations with 
reference values were found for all NO2 sensors during winter (0.92≤R 
≤ 0.95) while lower correlations were observed during summer 
(0.49≤R ≤ 0.54). A further analysis was carried out in terms of mean 
differences between pod raw data and reference concentrations. Large 
differences in concentrations were found for both O3 and NO2. These 
mean differences were highly significant (p < 0.01) among the pods as 
well as comparing the pods with reference data. Fig. 3 (panel A and C) 
shows the differences in mean concentrations for NO2 (winter co- 
location) and O3 (summer co-location). Particularly evident is the dif-
ference between the O3 mean values measured by pod 3 and the other 
two pods. This behaviour was not associated with some kind of instru-
ment malfunction, as confirmed by the very high levels of correlation 
with the other pods and by the stability over time of their differences 
(Fig. 3, panel B). The stability over time of the differences between pods 
and reference measurements was assessed calculating RMSE over 14-day 
time periods. Fig. 3 (panel B and D) shows for O3 (during summer co- 
location) and NO2 (during winter co-location) the little variability of 
RMSE. 

3.2. Performance of calibrated O3 sensors after relocation 

Calibrated O3 sensors showed good performance in all tests (Fig. 4). 
During summer R2 values calculated between pods and reference mon-
itors were always higher than 0.91 (Table 2). In all tests nRMSE were 

less than 7.5% in winter and less than 6.5% in summer. No statistically 
significant differences in R2 and RMSE were found between SS and no_SS 
tests during summer. On the contrary, significant differences were found 
during winter between SS and no_SS in relation to correlation with mean 
R2 increasing from 0.91 to 0.97 while only a small decrease was 
observed for RMSE (Fig. 5). RMSE were higher in summer than in winter 
and showed much higher variability across the tests. A small contribu-
tion of systematic errors (nMBE) compared to the random errors 
(nCRMSE) was observed during summer while more similar contribu-
tion emerged during winter (Fig. 6). 

3.3. Performance of calibrated NO2 sensors after relocation 

The performance scores for NO2 were different in relation to season. 
Excellent agreement between calibrated pod data and reference mea-
surements were found during winter (Fig. 7). R2 values across tests were 
always higher than 0.84 with mean R2 increasing from 0.90 for no_SS to 
0.93 for SS tests (Fig. 8). A large, highly significant (p < 0.01) drop 
(− 70%) was observed for RMSE (Fig. 8 and Table 2) which decreased 
from 13 μg/m3 (no_SS tests) to 5 μg/m3 (SS tests). A marked improve-
ment of performance was also found considering nRMSE which 
decreased from 17% (no_SS tests) to 6% (SS tests). The target diagram of 
Fig. 9 provides a visual representation of this marked decrease of nRMSE 
and highlight that most of this decrease of nRMSE was due to a decrease 
of normalized MBE, i.e. a decrease of the contribution of systematic 
errors to the total nRMSE. 

A marked decrease of performance was observed for NO2 sensors 
during summer. Average R2 was 0.38 for no_SS tests and 0.50 for SS 
tests. nRMSE values were much higher than during the winter season 
(27.7% for no_SS tests and 18.7% for SS tests). The target diagram in 
Fig. 7 shows the dispersion of data points and the balanced contribution 
between systematic and random errors. 

4. Discussion 

4.1. Comparison of results with published studies 

We found only a few scientific papers assessing the performance of 
sensor systems after relocation. Two interesting studies considered 

Fig. 3. Mean values of O3 concentrations (panel A) and 14-days moving average of RMSE (panel B) for the one-month summer co-location monitoring campaign. The 
same graphs are reported in panel C and D for the one-month NO2 winter co-location campaign. 
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Fig. 4. Examples of comparison of O3 reference measurements with POD raw and calibrated data. Training data were collected at the urban background station in 
Parma (Period 2) while the testing data refers to the urban background station in Modena (Period 3).. 

Table 2 
Overview of mean, minimum and maximum values of R2, RMSE and nRMSE calculated comparing O3 and NO2 measurements from calibrated sensor and reference 
monitors. SS= site-specific calibration tests. no_SS= no site-specific calibration tests.     

R2 RMSE (μg/m3) nRMSE (%)    

Mean Min Max Mean Min Max Mean Min Max 

O3  

Winter             
no_SS 0.91 0.82 0.99 5.8 2.2 6.3 7.4 2.4 11.1   
SS 0.97 0.96 0.99 4.5 2.4 6.7 6.8 2.6 12.0  

Summer             
no_SS 0.95 0.93 0.96 10.6 8.2 16.1 6.4 5.2 7.5   
SS 0.95 0.94 0.97 9.9 6.5 17.0 5.9 4.8 8.0 

NO2  

Winter             
no_SS 0.90 0.84 0.95 14.1 9.8 20.2 17.0 10.1 23.7   
SS 0.93 0.84 0.98 5.6 3.7 11.5 6.0 2.7 12.3  

Summer             
no_SS 0.38 0.19 0.49 9.1 4.5 15.9 27.7 12.2 61.2   
SS 0.50 0.36 0.68 11.1 5.8 21.3 18.7 10.3 31.7  
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similar statistical approaches for calibration and included relocation 
tests even though not in a systematic way and without a season specific 
performance analysis. 

Zimmermann et al. (2018) used RF model to calibrate a sensor sys-
tem at an urban background site (from August 2016 to February 2017) 
and then moved the system to another site characterized by increased 
traffic volume. The testing period didn’t include summer months (from 
February to May 2017). They found correlation levels for O3 equal to 
0.92, a bit lower than our findings. For NO2 the authors reported 
moderate R2 values (R2 = 0.75), i.e. lower than our winter findings and 
significantly higher than our summer ones. The authors reported accu-
racy in terms of mean absolute error (MAE) showing a value of 6.4 μg/ 
m3 for O3 and 9.4 μg/m3 for NO2. We calculated this performance in-
dicator with reference to our SS tests obtaining 3.4 μg/m3 and 9.0 μg/m3 

for O3 in the winter and summer season, respectively, and 4.8 μg/m3 

and 7.4 μg/m3 for NO2. 
Bigi et al. (2018) analyzed the performance of four systems including 

NO2 sensors. The systems were initially deployed for calibration at a 
suburban site (from April to July 2017) and then relocated at an urban 
background site (two units) and a traffic site (the other two units). The 
testing dataset included data from August to early December. R2 for RF 
models ranged from 0.79 to 0.91 at the urban background site and from 
0.82 to 0.85 at the traffic site. RMSE values ranged from 5.4 μg/m3 to 
9.6 μg/m3 with slightly worse performance at the traffic site. 

The problem of robustness to relocation of calibrated air quality 
multisensors devices has been also faced in a recent paper by De Vito 
et al. (2020). Based on data collected with AQMesh pods in different 
locations and seasons, they found that performance degradation was 

associated to difference between testing and calibration conditions in 
terms of probability distribution of relevant sensors drivers (target gas, 
non target interferents and environmental variables). Their findings are 
therefore in line with the lower performance observed in out study for 
no_SS compared to SS tests. It is worth to note that in the study by De 
Vito et al. (2020) relocation is limited to the urban area of Oslo while the 
present performance assessment considered relocation at distance up to 
50 km. 

The role of the type of monitoring location, or land use, in sensor 
calibration has been further emphasized by recent studies that have 
investigated the possibility of remote sensor calibration. These tech-
niques do not rely on sensor co-location with regulatory grade in-
struments but on the use of regulatory grade instruments as proxies 
based on broad land use categories. (Miskell et al., 2018; Weissert et al., 
2020). Remote calibration, while surely promising and more 
cost-effective than calibration based on co-location, seems at present not 
guarantee the same level of performance. 

4.2. Calibration approach 

The calibration approach adopted in the study deserves some dis-
cussion. A first point is related to the choice of considering season spe-
cific calibration. The comparison with the above mentioned published 
studies showed that mean performance values found in literature for 
NO2 are often lower than our winter findings and higher than our 
summer ones. Starting from our data and literature findings we can 
conclude that season specific calibration may represent a pragmatic and 
effective way to calibrate and deploy sensor systems without carrying 

Fig. 5. Performance metrics (R2, left panel; RMSE, right panel) for O3 sensor tests. Mean and standard deviation of individual R2 and RMSE tests are shown.  

Fig. 6. Target diagrams for O3 for all testing periods grouped for season, and no_SS and SS tests.  
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out long monitoring campaigns required to train complex non-linear 
models such as RF or other machine learning models. After all, most 
of the sensor system applications in the real world are related to short 

term monitoring campaigns. Spatial mapping (which is one of the most 
important application of sensor systems) is usually carried out with short 
term measurement campaigns in particular when associated to Land Use 

Fig. 7. Examples of comparison of NO2 reference measurements with POD raw and calibrated data. Training data were collected at the urban traffic station in Parma 
(Period 4) while the testing data refers to the urban traffic station in Modena (Period 5). 

Fig. 8. Performance metrics (R2, left panel; RMSE, right panel) for NO2 sensor tests. Mean and standard deviation of individual R2 and RMSE tests are shown.  
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Regression (LUR) model construction and testing (Kashima et al., 2018; 
Vizcaino and Lavalle, 2018). 

Another point to be discussed is the choice of a two week window for 
calibration. We verified in some preliminary analysis and also after the 
conclusion of the monitoring campaigns that calibration models gener-
ally converge to quite stable performance values after a few days. For 
our performance assessment we made an a priori choice of a two-week 
period because we considered this as a reasonable duration for both 
calibration and testing in relation to the possible occurrence of anom-
alous weather conditions not representative of the season. However, 
from our data and in particular for NO2 during winter and O3 during 
summer, it seems possible to achieve very good performance in testing 
sensor systems also considering shorter calibration periods. 

A final important point that deserves a discussion is related to the 
time stability of sensor performance and calibration settings. Our study 
supports the hypothesis of a good stability of the sensors during the same 
season. Excellent results were obtained with a specific analysis, con-
sisting in the two one-month co-location campaign. If sensor stability 
would be rigorously proved over longer time periods (e.g. three/four 
months) this would allow to plan a large number of monitoring cam-
paigns without sensor re-calibration during the same season. While 
some recent studies using higher-class sensor systems such that used in 
this study seem to be promising in this regard (Mueller et al., 2017; 
Zimmerman et al., 2018; Liu et al., 2020), others showed relevant drifts 
or performance degradation (Mueller et al., 2017), possibly due to both 
the change over time of response of sensor exposed to the same envi-
ronmental conditions and to different sensor response in changing 
environmental conditions. 

4.3. Seasonal variability of sensor performance 

The decline of performances of NO2 sensor during summer warrants 
a specific discussion. It is well known that electrochemical sensors may 
suffer from interference due to changing temperature, relative humidity 
or other gases that may affect the oxidation-reductions occurring at the 
working electrode (Mueller et al., 2017). AQMesh pods apply some al-
gorithms to compensate electrochemical sensor response due to tem-
perature, relative humidity and ozone. These algorithms are primarily 
based on some guidance provided by the Alphasense sensor 
manufacturing company (Sensor Technology House, UK) that was 
shown to perform well at temperature under 20 ◦C but may not lead to 
gas concentration values of acceptable accuracy (Cross et al., 2017) 
above 25-30 ◦C. The non linear RF calibration model adopted in our 
study, while largely superior to a simple linear model (data not shown) 
resulted not able to provide appropriate additional corrections. It is 
worth noting that ambient conditions during our summer campaigns 

were particularly critical with ozone concentration values up to 204 
μg/m3 and air temperature up to 41.6 ◦C, i.e. conditions rarely experi-
enced in previous studies. 

It is also important to note that the summer co-location campaign of 
the pods showed highly correlated time trends among pods, but much 
less correlated trends between each pod and the reference station. We 
can therefore conclude that the sensors showed deterministic responses 
to ambient conditions but low precision and accuracy. This supports the 
hypothesis that more sophisticated calibration model or longer training 
datataset may lead to more effective calibration procedures. On the 
contrary, the use of an array of sensors to measure the same pollutant in 
each pod, as tested by some authors (Bigi et al., 2018; Williams, 2019), 
may be not effective in improving sensor system performance. As a 
matter of fact, the high correlations between different NO2 sensors found 
in our study lead to the conclusion that multiple arrays of NO2 sensors 
may be not very effective in improving sensor system performance. 

5. Conclusions 

The study aimed at assessing the performance of sensor based sys-
tems after multiple relocation in different seasons and sites. The 
approach consisted in two-week field calibration of these devices at 
some reference monitoring stations and the test of the calibrated devices 
at different sites. Excellent performance was observed for O3 in all 
season while NO2 sensors showed high accuracy and precision during 
winter but a marked decrease of performance during the warm season. 
An improvement of sensor performance was found when sensors were 
calibrated and deployed in sites with similar characteristics (SS cali-
bration). This improvement was especially evident for NO2 during 
winter. In conclusion, our results showed a great potential of sensor 
based systems after SS field calibration to increase the spatial density of 
air quality monitoring at intra-urban up to regional scale and support 
exposure assessment studies. 
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