

Report mensile sulla qualità dell'aria

provincia: Piacenza

periodo di riferimento: 01/11/2019 - 30/11/2019

Stazioni di monitoraggio

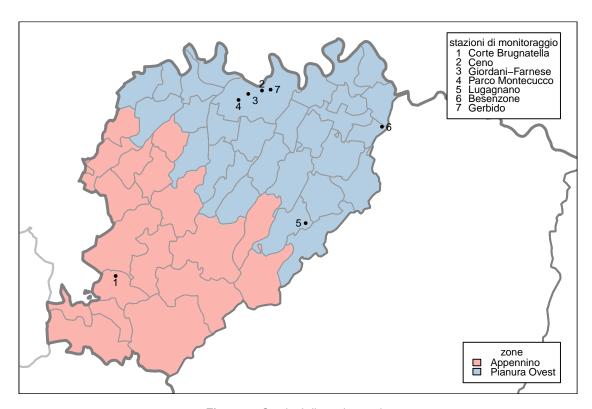


Figura 1: Stazioni di monitoraggio.

nome	Comune	tipo stazione	tipo zona
Corte Brugnatella	Corte Brugnatella	Fondo	Rurale
Giordani-Farnese	Piacenza	Traffico	Urbana
Parco Montecucco	Piacenza	Fondo	Urbana
Lugagnano	Lugagnano Val D'arda	Fondo	Suburbana
Besenzone	Besenzone	Fondo	Rurale
Ceno	Piacenza	Industriale	Suburbana
Gerbido	Piacenza	Industriale	Suburbana

Tabella 1: Stazioni di monitoraggio. Le stazioni riportare con sfondo grigio, in questa tabella e nelle seguenti, non appartengono alla rete regionale di monitoraggio. Tali stazioni sono state collocate per valutare eventuali impatti sulla qualità dell'aria di specifiche fonti di emissione come impianti industriali ed altre infrastrutture. I dati da esse rilevati sono quindi indicativi della sola realtà locale monitorata.

inquinante	descrizione	elaborazione	soglia	superamenti consentiti
PM10	Valore limite giornaliero	Media giornaliera	50 $\mu g/m^{3}$	35 in un anno
PM2.5	Valore limite su base annua	Media giornaliera	25 $\mu g/m^{3}$	-
NO_2	Valore limite orario	Media oraria	200 $\mu g/m^{3}$	18 in un anno
O_3	Soglia d'informazione	Media oraria	180 $\mu g/m^{3}$	-
	Soglia d'allarme	Media oraria	240 $\mu g/m^{3}$	-
	Valore obiettivo	Massima delle medie mobili su 8 ore	120 $\mu g/m^3$	75 in 3 anni
CO	Valore limite	Massima delle medie mobili su 8 ore	10 mg/m^{3}	-
SO_2	Valore limite giornaliero	Media giornaliera	125 $\mu g/m^3$	3 in un anno
SO_2	Valore limite orario	Media oraria	350 $\mu g/m^{3}$	24 in un anno
C_6H_6	Valore limite su base annua	Media giornaliera	$5~\mu g/m^3$	-

Tabella 2: Limiti di riferimento per gli inquinanti monitorati (D.Lgs.155/2010).

Il presente report contiene l'indicazione delle misure effettuate e l'elaborazione statistica delle medesime relativamente al mese in esame. I dati che hanno superato il processo di verifica mensile hanno validità sino all'effettuazione delle verifiche semestrali ed annuali che, utilizzando ulteriori strumenti statistici, garantiscono la qualità finale del dato.

PM10

Il particolato è l'inquinante atmosferico che provoca i maggiori danni alla salute umana in Europa. Il termine PM10 identifica le particelle di diametro aerodinamico inferiore o uguale ai 10 μm (1 μm = 1 millesimo di millimetro). Le particelle PM10 penetrano in profondità nei nostri polmoni. Il loro effetto sulla nostra salute e sull'ambiente dipende dalla loro composizione.

Alcune particelle vengono emesse direttamente nell'atmosfera, ma la maggior parte si formano come risultato di reazioni chimiche che coinvolgono i gas precursori (anidride solforosa, ossidi di azoto, ammoniaca e composti organici volatili). Gran parte delle particelle emesse direttamente derivano dalle attività umane, principalmente dalla combustione di combustibili fossili e biomasse. I gas precursori sono emessi dal traffico veicolare, dall'agricoltura, dall'industria e dal riscaldamento domestico.

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %	superamenti
Besenzone	87	3	37	18	19	29	30	34	0
Corte Brugnatella	100	< 3	13	5	4	11	11	12	0
Giordani-Farnese	100	5	43	21	21	32	35	38	0
Lugagnano	100	< 3	35	18	19	29	32	34	0
Parco Montecucco	100	9	31	19	19	26	31	31	0
Ceno	100	8	34	21	21	31	33	33	0
Gerbido	100	8	36	23	23	33	35	35	0

Tabella 3: PM10, statistiche del periodo.

stazione	media 01/01/2019- 30/11/2019	superamenti 01/01/2019- 30/11/2019	media 01/01/2018- 30/11/2018	superamenti 01/01/2018- 30/11/2018
Besenzone	26	24	24	4
Corte Brugnatella	10	0	11	0
Giordani-Farnese	30	38	28	20
Lugagnano	21	6	22	6
Parco Montecucco	26	26	25	12
Ceno	29	34	27	15
Gerbido	31	43	32	29

Tabella 4: PM10, confronto con l'anno precedente.

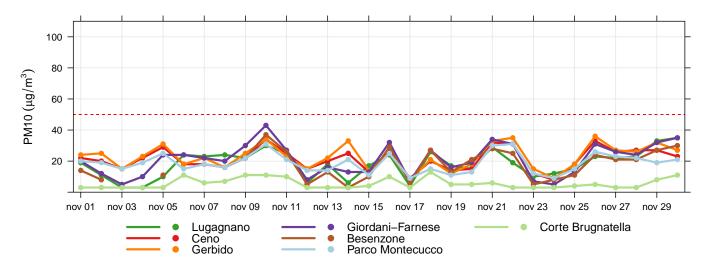


Figura 2: Concentrazioni giornaliere di PM10.

PM2.5

Il termine PM2.5 identifica le particelle di diametro aerodinamico inferiore o uguale ai 2.5 μm (1 μm = 1 millesimo di millimetro). L'inquinamento da particolato fine è composto da particelle solide e liquide così piccole che penetrano in profondità nei nostri polmoni ed entrano anche nel nostro flusso sanguigno. Il particolato è l'inquinante atmosferico che provoca i maggiori danni alla salute umana in Europa.

Alcune particelle vengono emesse direttamente nell'atmosfera, ma la maggior parte si formano come risultato di reazioni chimiche che coinvolgono i gas precursori (anidride solforosa, ossidi di azoto, ammoniaca e composti organici volatili). Gran parte delle particelle emesse direttamente derivano dalle attività umane, principalmente dalla combustione di combustibili fossili e biomasse. I gas precursori sono emessi dal traffico veicolare, dall'agricoltura, dall'industria e dal riscaldamento domestico.

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %
Besenzone	80	< 3	30	17	17	26	29	30
Parco Montecucco	100	5	26	15	14	22	24	25
Ceno	100	6	26	16	16	23	25	25
Gerbido	100	7	29	17	17	26	27	28

Tabella 5: PM2.5, statistiche del periodo.

stazione	media 01/01/2019- 30/11/2019	media 01/01/2018- 30/11/2018
Besenzone	21	20
Parco Montecucco	20	19
Ceno	21	20
Gerbido	22	23

Tabella 6: PM2.5, confronto con l'anno precedente.

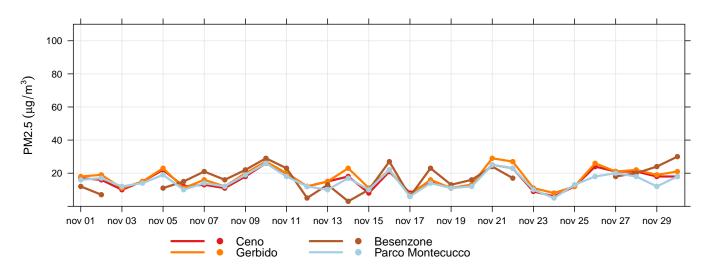


Figura 3: Concentrazioni giornaliere di PM2.5.

Ozono

L'ozono (O_3) è una forma speciale e altamente reattiva di ossigeno. Nella stratosfera l'ozono ci protegge dalle radiazioni ultraviolette. Ma nello strato più basso dell'atmosfera – la troposfera – l'ozono è dannoso per la salute e l'ambiente. Riduce la capacità fotosintetica delle piante, ne indebolisce la crescita e la riproduzione. Nel corpo umano provoca infiammazioni ai polmoni e ai bronchi. Per le persone che già soffrono di disturbi cardiovascolari o respiratori, picchi di ozono possono essere debilitanti e persino fatali.

L'ozono si forma come risultato di reazioni chimiche complesse tra gas precursori (ossidi di azoto, composti organici volatili COV, monossido di carbonio). Tali precursori sono emessi prevalentemente dalle combustioni (industria, traffico), dai solventi e dall'evaporazione di carburanti. I COV hanno anche importanti sorgenti naturali (in Emilia-Romagna circa il 20%). Le reazioni chimiche che producono ozono sono catalizzate dalla radiazione solare, di conseguenza questo inquinante è tipicamente estivo.

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %	sup. (ore)	180	sup. (giorni)	120
Besenzone	99	< 8	69	21	16	48	57	63	0		0	
Corte Brugnatella	100	< 8	81	48	51	69	72	75	0		0	
Lugagnano	100	< 8	82	25	21	49	56	67	0		0	
Parco Montecucco	100	< 8	71	17	12	44	51	58	0		0	

Tabella 7: Ozono, statistiche del periodo.

stazione	media 01/01/2019- 30/11/2019	sup. 180 (ore) 01/01/2019- 30/11/2019	sup. 120 (giorni) 01/01/2019- 30/11/2019	media 01/01/2018- 30/11/2018	sup. 180 (ore) 01/01/2018- 30/11/2018	sup. 120 (giorni) 01/01/2018- 30/11/2018
Besenzone	50	15	61	46	1	60
Corte Brugnatella	80	3	43	69	0	20
Lugagnano	68	35	75	57	5	47
Parco Montecucco	54	64	80	51	32	80

Tabella 8: O3, confronto con l'anno precedente.

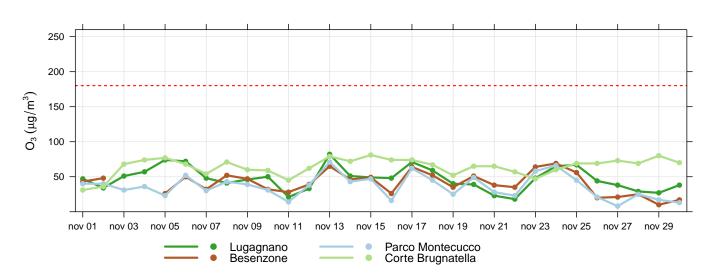


Figura 4: Concentrazioni massime giornaliere di ozono.

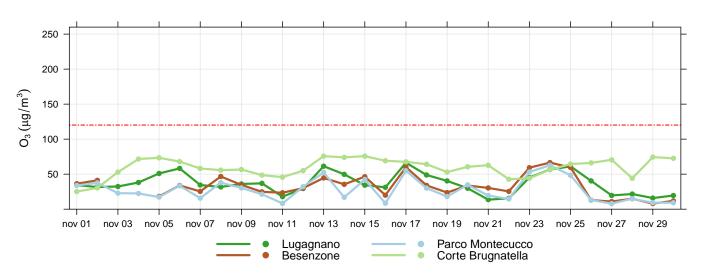
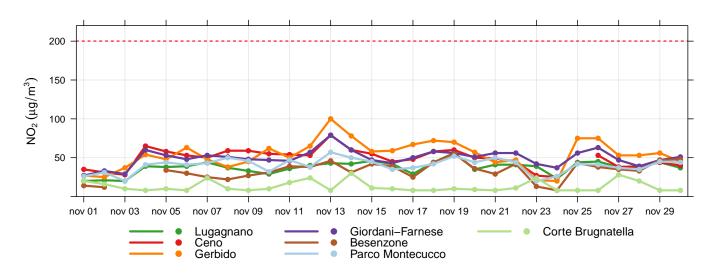


Figura 5: Massimi giornalieri della media di 8 ore di ozono.

Biossido di azoto

Il biossido di azoto (NO_2) è un gas reattivo, di colore bruno e di odore acre e pungente. L'esposizione a breve termine all' NO_2 può causare diminuzione della funzionalità polmonare, specie nei gruppi più sensibili della popolazione, mentre l'esposizione a lungo termine può causare effetti più gravi come un aumento della suscettibilità alle infezioni respiratorie. Inoltre determina effetti negativi sugli ecosistemi, contribuendo all'acidificazione e all'eutrofizzazione. È precursore dell'ozono, del PM10 e del PM2,5.


Le maggiori sorgenti di NO_2 sono i processi di combustione ad alta temperatura (come quelli che avvengono nei motori delle automobili – specie diesel – o nelle centrali termoelettriche).

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %	superamenti
Besenzone	98	< 8	55	20	20	34	38	42	0
Corte Brugnatella	100	< 8	30	< 8	< 8	11	14	20	0
Giordani-Farnese	100	< 8	79	34	34	48	51	56	0
Lugagnano	100	< 8	56	22	20	36	39	42	0
Parco Montecucco	100	< 8	57	25	25	39	43	46	0
Ceno	100	< 8	79	32	31	48	52	58	0
Gerbido	100	< 8	100	35	35	54	61	68	0

Tabella 9: Biossido di azoto, statistiche del periodo.

stazione	media 01/01/2019- 30/11/2019	media 01/01/2018- 30/11/2018
Besenzone	17	18
Corte Brugnatella	3	4
Giordani-Farnese	32	33
Lugagnano	15	16
Parco Montecucco	22	22
Ceno	34	36
Gerbido	36	31

Tabella 10: NO2, confronto con l'anno precedente.

Figura 6: Concentrazioni massime giornaliere di NO_2 .

Benzene

Il benzene (C_6H_6) è una sostanza chimica liquida e incolore dal caratteristico odore aromatico pungente. L'Agenzia Internazionale per la Ricerca sul Cancro (IARC) classifica il benzene come sostanza cancerogena di classe I.

La maggior parte del benzene oggi prodotto (85%) trova impiego nell'industria chimica, per produrre plastiche, resine, detergenti, pesticidi, intermedi per l'industria farmaceutica, vernici, collanti, inchiostri e adesivi. Il benzene è inoltre contenuto nelle benzine.

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %	superamenti
Giordani-Farnese	95	0.3	6.8	1.2	1.1	1.9	2.2	2.5	0

Tabella 11: Benzene, statistiche del periodo.

stazione	media 01/01/2019- 30/11/2019	media 01/01/2018- 30/11/2018
Giordani-Farnese	0.9	1.0

Tabella 12: C6H6, confronto con l'anno precedente.

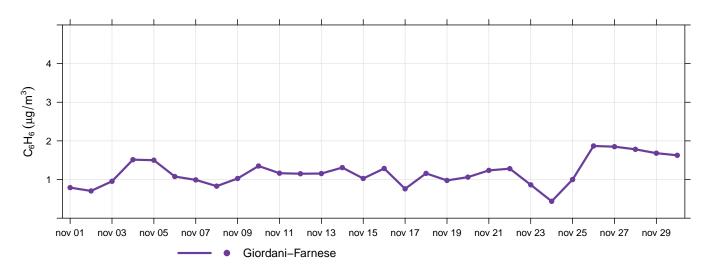


Figura 7: Concentrazioni medie giornaliere di benzene.

Monossido di carbonio

Il monossido di carbonio (CO), incolore e inodore, è un prodotto derivante dalla combustione. A bassissime dosi il CO non è pericoloso, mentre a livelli di concentrazione nel sangue pari al 10-20% il soggetto avverte i primi sintomi, quali lieve emicrania e stanchezza.

La principale sorgente di CO è il traffico veicolare (circa l'80% a livello mondiale), in particolare i veicoli a benzina. L'emissione è connessa alle condizioni di funzionamento del motore: si registrano concentrazioni più elevate con motore al minimo e in fase di decelerazione. L'evoluzione delle tecnologie ha determinato una significativa riduzione delle emissioni.

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %	superamenti
Giordani-Farnese	100	< 0.4	2	0.5	0.5	0.7	8.0	0.9	0
Ceno	100	< 0.4	1.3	< 0.4	< 0.4	0.5	0.5	0.6	0
Gerbido	100	< 0.4	1.2	0.5	0.5	0.7	0.7	8.0	0

Tabella 13: Monossido di carbonio, statistiche del periodo.

stazione	media 01/01/2019- 30/11/2019	media 01/01/2018- 30/11/2018			
Giordani-Farnese	0.4	0.4			
Ceno	0.3	0.3			
Gerbido	0.5	0.5			

Tabella 14: CO, confronto con l'anno precedente.

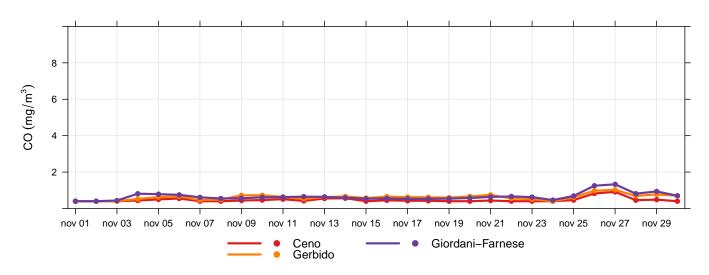


Figura 8: Massimi giornalieri della media di 8 ore di monossido di carbonio.

Mercurio

In aria ambiente il mercurio si trova principalmente (dal 90 al 99%) come mercurio elementare allo stato gassoso a concentrazioni dell'ordine dei ng/m³, con tempi di permanenza in atmosfera dell'ordine di anni.

Le sorgenti che immettono in atmosfera il mercurio sono di origine sia naturale che antropogenica: i principali processi naturali che rilasciano mercurio includono la volatilizzazione da vegetazione e da ambienti acquatici e marini, le emissioni dei vulcani, degassaggio da materiali geologici e rilasci associati a trasporto di polveri. Le principali sorgenti antropogeniche sono legate a processi di lavorazione industriale, di combustione e ad impianti per l'incenerimento dei rifiuti.

La normativa relativa alla qualità dell'aria non prevede un limite per questo inquinante, ma per quanto riguarda le concentrazioni tipiche in aria ambiente, il documento *Position paper on mercury* (http://ec.europa.eu/environment/air/pdf/pp_mercury4.pdf) prodotto dal gruppo di esperti nominati dagli Stati Membri Comunità Europea indica concentrazioni medie di mercurio elementare comprese tra 1.0 e 3.6 ng/m³.

stazione	% dati validi	min	max	media	50° %	90° %	95° %	98° %
Ceno	100	1,2	7,1	2,2	2,1	2,8	3,1	3,3

Tabella 15: Hg, statistiche del periodo.

stazione	media 01/01/2019 -			
	30/11/2019			
Ceno	2,2			

Tabella 16: *Hg, media annuale.*

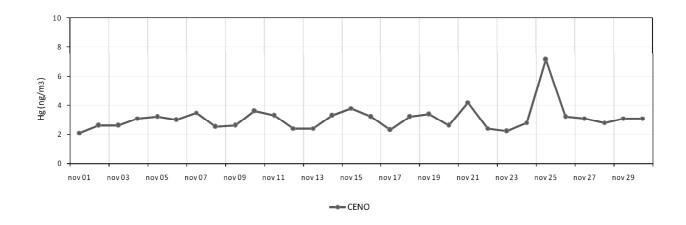


Figura 9: Hg, massimi giornalieri.